
Basics of JavaScript Code

JavaScript is a high-level, dynamic, and interpreted programming
language. It is used to add interactivity and other dynamic
elements to websites.

The console in JavaScript 2

Variables: 3

JavaScript Comments 5

Data Types: 6

JavaScript Data Types 6

Arithmetic Operations: 8

Conditional Statements: 8

Functions: 10

Laurence Svekis https://basescripts.com/

https://basescripts.com/

JavaScript Loops: 12

JavaScript Arrays 13

JavaScript Objects 15

How to output a table into the console 17

JavaScript String Methods 18

JavaScript Number Methods 19

JavaScript Math 21

JavaScript Classes 23

Regular Expression (RegExp) 25

The console in JavaScript
The console in JavaScript is a tool used for debugging and testing
purposes. It allows developers to log information to the browser
console for viewing. This can be useful for checking the values of
variables, examining the output of functions, and tracking down
errors in code.

There are several methods to log information to the console in
JavaScript:

console.log(): This method logs the specified data to the
console.
For example:
console.log("Hello World"); // Output: Hello World

console.error(): This method logs an error message to the
console.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

For example:
console.error("This is an error"); // Output: Error:
This is an error

console.warn(): This method logs a warning message to the
console.
For example:
console.warn("This is a warning"); // Output: Warning:
This is a warning

These methods can be used directly in the JavaScript code and
the output can be viewed in the browser console by opening the
Developer Tools in most modern browsers.

Here are some basics of JavaScript with code examples:

Variables:
variables are used to store values in JavaScript. You can declare a
variable with the "let" keyword, like this:
let x = 10;
let name = "John";
let age = 30;
let isStudent = false;
let weight = 75.5;
let address = "123 Main St.";
JavaScript variables are containers that store data values. There
are three main types of variables in JavaScript:

var: This is the original way to declare a variable in JavaScript. It
is function scoped, which means it is accessible within the
function it was declared in.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

For example:
var name = "John";
function printName() {
console.log(name);

}
printName(); // Output: John

let: This type of variable was introduced in ECMAScript 6 and is
block scoped. It means that the variable is only accessible within
the block of code it was declared in.

For example:
let age = 30;
if (true) {
let age = 40;
console.log(age); // Output: 40

}
console.log(age); // Output: 30

const: This type of variable is also block scoped and was
introduced in ECMAScript 6. The difference between const and let
is that const cannot be reassigned after it has been declared.

For example:
const country = "USA";
country = "Canada"; // Throws an error

It is important to note that the value stored inside a variable
declared with const can still be mutable, meaning its properties
can be changed but it cannot be reassigned to a completely new
value.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

JavaScript Comments
In JavaScript, you can add comments in your code to describe
what it does or to temporarily ignore parts of the code. There are
two types of comments: single-line comments and multi-line
comments.

Single-line comment:
// This is a single-line comment
Multi-line comment:
/*
This is a multi-line
comment

*/

Here's an example that shows how comments can be used in a
code:
// This is a single-line comment
/*
This is a multi-line
comment

*/

const name = "John"; // This is also a single-line comment
// The code below will print the value of the variable "name"
console.log(name);

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Data Types:
JavaScript has several data types, including numbers, strings,
and booleans. Here's an example of each:
let num = 10;
let str = "Hello World";
let bool = true;
let num1 = 20;
let num2 = -10;
let str1 = "Hello";
let str2 = 'JavaScript';
let bool1 = true;
let bool2 = false;

JavaScript Data Types
In JavaScript, there are seven basic data types:

Number: Used to represent numbers. Example: const num = 42;

String: Used to represent a sequence of characters. Example:
const name = "John";

Boolean: Used to represent a logical value of either true or false.
Example: const isMarried = true;

Undefined: Represents a value that has not been assigned.
Example: const age; console.log(age); // Output: undefined

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Null: Represents a value that is explicitly null. Example: const
address = null;

Symbol: Used to create unique identifiers for objects. Example:
const symbol = Symbol("description");

Object: Used to represent a collection of key-value pairs.
Example: const person = { name: "John", age: 30 };

In JavaScript, variables have a dynamic type and can change
their type based on the value assigned to them. The typeof
operator can be used to check the type of a variable.

Example:
const num = 42;
console.log(typeof num); // Output: "number"

const name = "John";
console.log(typeof name); // Output: "string"

const isMarried = true;
console.log(typeof isMarried); // Output: "boolean"

const age;
console.log(typeof age); // Output: "undefined"

const address = null;
console.log(typeof address); // Output: "object"

const symbol = Symbol("description");
console.log(typeof symbol); // Output: "symbol"

Laurence Svekis https://basescripts.com/

https://basescripts.com/

const person = { name: "John", age: 30 };
console.log(typeof person); // Output: "object"

Arithmetic Operations:
JavaScript supports basic arithmetic operations like addition,
subtraction, multiplication, and division. Here's an example:
let x = 10;
let y = 5;
let sum = x + y;
let difference = x - y;
let product = x * y;
let quotient = x / y;
let x = 10;
let y = 20;
let sum = x + y;
let difference = x - y;
let product = x * y;
let quotient = x / y;
let modulo = x % y;
let increment = x++;
let decrement = y--;

Conditional Statements:
Conditional statements are used to execute different blocks of
code based on conditions. The if-else statement is the most
common type of conditional statement in JavaScript. Here's an
example:
let x = 10;

Laurence Svekis https://basescripts.com/

https://basescripts.com/

if (x > 5) {
console.log("x is greater than 5");

} else {
console.log("x is not greater than 5");

}
let grade = 85;

if (grade >= 90) {
console.log("A");

} else if (grade >= 80) {
console.log("B");

} else if (grade >= 70) {
console.log("C");

} else {
console.log("F");

}

let day = "Sunday";

switch (day) {
case "Monday":
console.log("Today is Monday");
break;

case "Tuesday":
console.log("Today is Tuesday");
break;

case "Wednesday":
console.log("Today is Wednesday");
break;

case "Thursday":
console.log("Today is Thursday");
break;

Laurence Svekis https://basescripts.com/

https://basescripts.com/

case "Friday":
console.log("Today is Friday");
break;

case "Saturday":
console.log("Today is Saturday");
break;

default:
console.log("Today is Sunday");

}

Functions:
Functions are blocks of code that can be executed when they are
called. Here's an example:
function greeting() {
console.log("Hello World");

}

greeting();
function add(x, y) {
return x + y;

}

let result = add(10, 20);
console.log(result);

function greet(name) {
console.log("Hello " + name);

}

Laurence Svekis https://basescripts.com/

https://basescripts.com/

greet("John");

function calculateArea(width, height) {
return width * height;

}

let area = calculateArea(10, 20);
console.log(area);

function checkOddEven(num) {
if (num % 2 === 0) {
return "Even";

} else {
return "Odd";

}
}

let result = checkOddEven(10);
console.log(result);

function generateRandomNumber() {
return Math.floor(Math.random() * 100);

}

let randomNumber = generateRandomNumber();
console.log(randomNumber);

These are just some of the basics of JavaScript. There is much
more to learn, but these basics will give you a good foundation to
start building your skills.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

JavaScript Loops:
JavaScript has two types of loops: for loops and while loops. Here
are examples of each:

For Loop:
for (const i = 0; i < 5; i++) {
console.log("Iteration " + (i + 1));

}

This code will output:
Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5

While Loop:
const i = 0;
while (i < 5) {
console.log("Iteration " + (i + 1));
i++;

}

This code will output:
Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5

Laurence Svekis https://basescripts.com/

https://basescripts.com/

In addition to these two loops, there is also the do-while loop,
which is similar to the while loop, but with a slight difference in
the way the condition is checked. Here's an example:

const i = 0;
do {
console.log("Iteration " + (i + 1));
i++;

} while (i < 5);

This code will output:
Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5

These are the basics of JavaScript loops. You can use them to
repeat a block of code multiple times based on conditions.

JavaScript Arrays
An array in JavaScript is a data structure that stores a collection
of values. You can access individual values of an array by
referring to their index number. Arrays are declared using square
brackets [] and items are separated by commas.

Here's an example of an array in JavaScript:
const fruits = ["apple", "banana", "cherry"];

Laurence Svekis https://basescripts.com/

https://basescripts.com/

JavaScript provides several built-in methods for working with
arrays. Here are some commonly used methods with examples:

length property: returns the number of elements in an array.
const fruits = ["apple", "banana", "cherry"];
console.log(fruits.length); // Output: 3

push() method: adds an element to the end of an array.
const fruits = ["apple", "banana", "cherry"];
fruits.push("orange");
console.log(fruits); // Output: ["apple", "banana",
"cherry", "orange"]

pop() method: removes the last element from an array and
returns it.
const fruits = ["apple", "banana", "cherry"];
const lastFruit = fruits.pop();
console.log(fruits); // Output: ["apple", "banana"]
console.log(lastFruit); // Output: "cherry"

unshift() method: adds an element to the beginning of an
array.
const fruits = ["apple", "banana", "cherry"];
fruits.unshift("peach");
console.log(fruits); // Output: ["peach", "apple",
"banana", "cherry"]

shift() method: removes the first element from an array and
returns it.
const fruits = ["apple", "banana", "cherry"];
const firstFruit = fruits.shift();
console.log(fruits); // Output: ["banana", "cherry"]

Laurence Svekis https://basescripts.com/

https://basescripts.com/

console.log(firstFruit); // Output: "apple"

splice() method: adds or removes elements from an array.
const fruits = ["apple", "banana", "cherry"];
fruits.splice(1, 0, "lemon", "lime");
console.log(fruits); // Output: ["apple", "lemon",
"lime", "banana", "cherry"]
These are some of the most commonly used array methods in
JavaScript. You can use these methods to manipulate arrays and
perform various operations on them.

JavaScript Objects
In JavaScript, an object is a collection of key-value pairs that
store data. Objects are declared using curly braces {} and the
keys and values are separated by colons.

Here's an example of an object in JavaScript:
const person = {
name: "John",
age: 30,
location: "San Francisco"

};

You can access the values of an object using the dot notation or
square bracket notation.

Here's an example of how to access the values of an object using
the dot notation:
const person = {
name: "John",
age: 30,

Laurence Svekis https://basescripts.com/

https://basescripts.com/

location: "San Francisco"
};
console.log(person.name); // Output: "John"
console.log(person.age); // Output: 30
console.log(person.location); // Output: "San
Francisco"

Here's an example of how to access the values of an object using
the square bracket notation:
const person = {
name: "John",
age: 30,
location: "San Francisco"

};

const nameKey = "name";
const ageKey = "age";
const locationKey = "location";
console.log(person[nameKey]); // Output: "John"
console.log(person[ageKey]); // Output: 30
console.log(person[locationKey]); // Output: "San
Francisco"

You can also add new properties or change the values of existing
properties in an object.
Here's an example of how to add a new property to an object:
const person = {
name: "John",
age: 30,
location: "San Francisco"

};

Laurence Svekis https://basescripts.com/

https://basescripts.com/

person.email = "john@example.com";
console.log(person); // Output: { name: "John", age:
30, location: "San Francisco", email:
"john@example.com" }

Here's an example of how to change the value of an existing
property in an object:

const person = {
name: "John",
age: 30,
location: "San Francisco"

};
person.age = 35;
console.log(person); // Output: { name: "John", age:
35, location: "San Francisco" }

Objects are widely used in JavaScript to store data and represent
real-world objects. You can use objects to create more complex
data structures and manage your data more effectively.

How to output a table into the console
console.table(): This method logs the data in a table format. For
example:
console.table([{a:1, b:2}, {a:3, b:4}]);
// Output:
// ┌─────────┬───┬───┐
// │ (index) │ a │ b │
// ├─────────┼───┼───┤
// │ 0 │ 1 │ 2 │
// │ 1 │ 3 │ 4 │

Laurence Svekis https://basescripts.com/

https://basescripts.com/

// └─────────┴───┴───┘

JavaScript String Methods
JavaScript provides several built-in methods for manipulating
strings, some of the commonly used ones are:

length: Returns the length of the string.
Example: var name = "John"; console.log(name.length); //
Output: 4

concat: Joins two or more strings together.
Example: var firstName = "John"; var lastName = "Doe";
console.log(firstName.concat(" ", lastName)); // Output: "John
Doe"

toUpperCase: Converts the string to uppercase.
Example: var name = "John"; console.log(name.toUpperCase());
// Output: "JOHN"

toLowerCase: Converts the string to lowercase.
Example: var name = "John"; console.log(name.toLowerCase());
// Output: "john"

charAt: Returns the character at the specified index.
Example: var name = "John"; console.log(name.charAt(0)); //
Output: "J"

indexOf: Returns the index of the first occurrence of the
specified value, or -1 if it is not found.
Example: var name = "John"; console.log(name.indexOf("o")); //
Output: 1

Laurence Svekis https://basescripts.com/

https://basescripts.com/

slice: Extracts a part of the string and returns it as a new string.
Example: var name = "John"; console.log(name.slice(0, 2)); //
Output: "Jo"

replace: Replaces the first occurrence of the specified value with
a new value.
Example: var name = "John"; console.log(name.replace("J",
"j")); // Output: "john"

trim: Removes whitespaces from both ends of the string.
Example: var name = " John "; console.log(name.trim()); //
Output: "John"

These are just a few of the many string methods available in
JavaScript, each with its own specific use case. Understanding
and utilizing these methods can greatly simplify string
manipulation tasks in your code.

JavaScript Number Methods
JavaScript provides several built-in methods for working with
numbers. Here are some common ones:

Number.isInteger(): This method returns true if the argument
is an integer and false otherwise.

For example:
console.log(Number.isInteger(3)); // Output: true
console.log(Number.isInteger(3.14)); // Output: false

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Number.parseFloat(): This method parses a string argument
and returns a floating-point number.

For example:
console.log(Number.parseFloat("3.14")); // Output: 3.14

Number.parseInt(): This method parses a string argument and
returns an integer.

For example:
console.log(Number.parseInt("3.14")); // Output: 3

Number.toFixed(): This method returns a string representation
of a number with a specified number of decimal places.

For example:
console.log((3.14).toFixed(2)); // Output: 3.14

Number.toPrecision(): This method returns a string
representation of a number with a specified number of significant
digits.

For example:
console.log((3.14).toPrecision(2)); // Output: 3.1

Math.abs(): This method returns the absolute value of a
number.

For example:
console.log(Math.abs(-3.14)); // Output: 3.14

Math.ceil(): This method returns the smallest integer greater
than or equal to a number.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

For example:
console.log(Math.ceil(3.14)); // Output: 4

Math.floor(): This method returns the largest integer less than
or equal to a number.

For example:
console.log(Math.floor(3.14)); // Output: 3

These methods can be used to perform various operations on
numbers in JavaScript.

JavaScript Math
JavaScript provides several built-in methods for working with
mathematical operations. Here are some common ones:

Math.abs(): This method returns the absolute value of a
number.

For example:
console.log(Math.abs(-3.14)); // Output: 3.14

Math.ceil(): This method returns the smallest integer greater
than or equal to a number.

For example:
console.log(Math.ceil(3.14)); // Output: 4

Math.floor(): This method returns the largest integer less than
or equal to a number.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

For example:
console.log(Math.floor(3.14)); // Output: 3

Math.max(): This method returns the largest of zero or more
numbers.

For example:
console.log(Math.max(3, 7, 4)); // Output: 7

Math.min(): This method returns the smallest of zero or more
numbers.

For example:
console.log(Math.min(3, 7, 4)); // Output: 3

Math.pow(): This method returns the value of a number raised
to the specified power.

For example:
console.log(Math.pow(3, 2)); // Output: 9

Math.random(): This method returns a random number
between 0 (inclusive) and 1 (exclusive).

For example:
console.log(Math.random()); // Output: a random number
between 0 and 1

Math.round(): This method returns the value of a number
rounded to the nearest integer.

For example:

Laurence Svekis https://basescripts.com/

https://basescripts.com/

console.log(Math.round(3.14)); // Output: 3

These methods can be used to perform various mathematical
operations in JavaScript.

JavaScript Classes
JavaScript added class syntax with ECMAScript 6 (ES6) as a way
to write reusable code and create objects. A class is a blueprint
for creating objects that have similar properties and methods.

Here's an example of a class in JavaScript:
class Person {
constructor(name, age) {
this.name = name;
this.age = age;

}

greet() {
console.log(`Hello, my name is ${this.name} and I

am ${this.age} years old.`);
}

}

In the above example, the Person class has two properties: name
and age, and a method greet that prints a greeting message.

To create an object from this class, you use the new operator and
call the constructor function:
const person = new Person("John", 30);
person.greet();

Laurence Svekis https://basescripts.com/

https://basescripts.com/

// Output: Hello, my name is John and I am 30 years
old.
You can also extend a class to create a subclass and inherit
properties and methods from the parent class:

class Student extends Person {
constructor(name, age, major) {
super(name, age);
this.major = major;

}

study() {
console.log(`I am studying ${this.major}.`);

}
}

const student = new Student("Jane", 20, "Computer
Science");
student.greet();
// Output: Hello, my name is Jane and I am 20 years
old.
student.study();
// Output: I am studying Computer Science.

In the above example, the Student class extends the Person class
and adds a new property major and a method study. The super
keyword is used to call the constructor of the parent class and
pass along the required properties.

Classes in JavaScript provide a way to write organized and
reusable code, making it easier to maintain and extend your
codebase.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Regular Expression (RegExp)
A Regular Expression (RegExp) is a pattern that specifies a set of
strings. JavaScript provides built-in support for regular
expressions with the RegExp object.

Here's an example of how to use regular expressions in
JavaScript:
let string = "Hello, World!";
let pattern = /Hello/;
let result = pattern.test(string);
console.log(result); // Output: true

In this example, we define a string "Hello, World!" and a regular
expression pattern /Hello/. We use the test() method of the
RegExp object to test if the string matches the pattern. The result
is a boolean value indicating whether the string matches the
pattern.

You can also use the match() method of the String object to find
all matches of a regular expression pattern in a string:
let string = "Hello, World! Hello, JavaScript!";
let pattern = /Hello/g;
let result = string.match(pattern);
console.log(result); // Output: ["Hello", "Hello"]

In this example, we add the g (global) flag to the pattern to find
all matches in the string, instead of just the first match. The
result is an array of strings containing all matches of the pattern
in the string.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Regular expressions can be a powerful tool for matching and
manipulating strings in JavaScript.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

