
Guide to JavaScript
JavaScript is a high-level, dynamic, and interpreted programming

language. It is used to add interactivity and other dynamic

elements to websites.

The console in JavaScript 6

Variables: 8

JavaScript Comments 10

Data Types: 11

JavaScript Data Types 11

Arithmetic Operations: 13

Conditional Statements: 14

Functions: 16

JavaScript Loops: 19

JavaScript Arrays 21

JavaScript Objects 23

How to output a table into the console 26

JavaScript String Methods 26

JavaScript Number Methods 28

JavaScript Math 31

Variables: 33

Arrays: 34

Example : Array 34

Example: Object 35

Objects: 36

Conditional Statements: 36

Functions: 37

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Example: Simple Function 38

Example: Conditional Statement 38

String Methods: 39

Ternary Operators: 39

Using if statements: 40

Using the switch statement: 41

Example of switch statements: 42

Using an object to store data: 43

Using a function to define a reusable piece of code: 44

Anonymous Functions: 44

Arrow Functions: 45

Example: For Loop 45

While Loops: 46

Using a for loop to iterate through an array: 46

Using a while loop to calculate the factorial of a number: 47

Loops: 48

Using the for loop: 48

Using the while loop: 49

For-of Loop: 50

Array Methods: 50

Object Destructuring: 51

Spread Operator: 52

Using the Date object: 52

Example of Date object: 53

Using the Math object: 53

Example of Math object: 54

Using try and catch statements: 54

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Try-catch statement Example: 55

Using the map() method: 56

Using the filter() method: 56

Using the reduce() method: 57

Using the Array.includes() method: 58

Using a class to define a blueprint for creating objects: 59

Example: Higher-Order Function 60

Example: Closure 61

Example: Destructuring 62

Example: Promises 63

Example: Generators 64

Example: Asynchronous Iteration 65

Example: Map and Set 66

Example: WeakMap and WeakSet 67

Example: Object Destructuring 68

Example: Class and Inheritance 69

JavaScript Classes 70

Regular Expression (RegExp) 73

Best Practices JavaScript Code 74

closure in JavaScript 78

hoisting in JavaScript 79

difference between null and undefined in JavaScript 80

difference between a for loop and forEach in JavaScript 81

difference between == and === in JavaScript 83

Coding Function that returns a sum of the elements 84

Function that takes an array of strings returns string lengths 85

strict mode example 86

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Use const and let 86

Use Arrows functions 87

Use Destructuring to get values from arrays 87

Use template literals 88

Use forEach over for loop 88

use of higher-order functions 88

Avoid Global Variables 89

Avoid Naming Collisions 90

Initialize variables with default values 90

Use spread operator 91

Use of default parameters 91

Use rest operator 92

Use object literals 93

Use destructuring with rest operator 93

Use of async/await 94

Use destructuring with default values 95

Use named exports 96

Use object spread operator 96

Use try/catch 97

Use ternary operator 98

Use named export/import 98

Closure 99

forEach Array 100

JavaScript Map function 101

JavaScript Filter 102

Check if number is an integer 103

Is the string a palindrome 104

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Reverse a String 105

Find the largest number in an array 106

Check Object Property 107

Common Elements in two Arrays 108

Function takes an array and returns a new array with only even numbers 109

Function that takes array of objects and returns specific property values 110

Function that returns largest number from the array 112

Function returning array of objects and unique values 113

Function that returns squares of array numbers 114

Function that returns new string with specific occurrences removed 115

Function returns new array of strings with 5 characters 116

Use let and const instead of var 118

Use template literals 118

Use arrow functions 119

Use destructuring 120

Use spread operator 120

Use map, filter, and reduce 121

JavaScript Closure Explained 122

JavaScript Object Notation (JSON) 125

JavaScript Create Element List 133

Create an interactive table list of item object values from a JavaScript array. 136

How to Create Page Elements with JavaScript 140
Create Page Elements with JavaScript 140

Coding Example of how to insert page content , html elements into your DOM page.
142

JavaScript Async Code Examples 144

JavaScript Closure 147

JavaScript Closure Advanced 150

Laurence Svekis https://basescripts.com/

https://basescripts.com/

JavaScript Image Gallery and Dynamic Image Gallery using page classes or create
page elements on the fly with code 153

Dynamic Image Gallery 155

HTTP request in Javascript Get JSON data with xhr method and fetch methods 158

How to add Fade Out and Fade in to page elements pure JavaScript 167

How to create page HTML elements with JavaScript code append prepend before
after pure JavaScript 170

Regex Checking for Numbers in the input field 172

The console in JavaScript

The console in JavaScript is a tool used for debugging and testing

purposes. It allows developers to log information to the browser

console for viewing. This can be useful for checking the values of

variables, examining the output of functions, and tracking down

errors in code.

There are several methods to log information to the console in

JavaScript:

console.log(): This method logs the specified data to the

console.

For example:

console.log("Hello World"); // Output: Hello World

Laurence Svekis https://basescripts.com/

https://basescripts.com/

console.error(): This method logs an error message to the

console.

For example:

console.error("This is an error"); // Output: Error:

This is an error

console.warn(): This method logs a warning message to the

console.

For example:

console.warn("This is a warning"); // Output: Warning:

This is a warning

These methods can be used directly in the JavaScript code and

the output can be viewed in the browser console by opening the

Developer Tools in most modern browsers.

Here are some basics of JavaScript with code examples:

Variables:

variables are used to store values in JavaScript. You can declare a

variable with the "let" keyword, like this:

let x = 10;

let name = "John";

let age = 30;

let isStudent = false;

Laurence Svekis https://basescripts.com/

https://basescripts.com/

let weight = 75.5;

let address = "123 Main St.";

JavaScript variables are containers that store data values. There

are three main types of variables in JavaScript:

var: This is the original way to declare a variable in JavaScript. It

is function scoped, which means it is accessible within the

function it was declared in.

For example:

var name = "John";

function printName() {

console.log(name);

}

printName(); // Output: John

let: This type of variable was introduced in ECMAScript 6 and is

block scoped. It means that the variable is only accessible within

the block of code it was declared in.

For example:

let age = 30;

if (true) {

let age = 40;

console.log(age); // Output: 40

Laurence Svekis https://basescripts.com/

https://basescripts.com/

}

console.log(age); // Output: 30

const: This type of variable is also block scoped and was

introduced in ECMAScript 6. The difference between const and let

is that const cannot be reassigned after it has been declared.

For example:

const country = "USA";

country = "Canada"; // Throws an error

It is important to note that the value stored inside a variable

declared with const can still be mutable, meaning its properties

can be changed but it cannot be reassigned to a completely new

value.

JavaScript Comments

In JavaScript, you can add comments in your code to describe

what it does or to temporarily ignore parts of the code. There are

two types of comments: single-line comments and multi-line

comments.

Single-line comment:

Laurence Svekis https://basescripts.com/

https://basescripts.com/

// This is a single-line comment

Multi-line comment:

/*

This is a multi-line

comment

*/

Here's an example that shows how comments can be used in a

code:

// This is a single-line comment

/*

This is a multi-line

comment

*/

const name = "John"; // This is also a single-line comment

// The code below will print the value of the variable "name"

console.log(name);

Data Types:

JavaScript has several data types, including numbers, strings,

and booleans. Here's an example of each:

let num = 10;

Laurence Svekis https://basescripts.com/

https://basescripts.com/

let str = "Hello World";

let bool = true;

let num1 = 20;

let num2 = -10;

let str1 = "Hello";

let str2 = 'JavaScript';

let bool1 = true;

let bool2 = false;

JavaScript Data Types

In JavaScript, there are seven basic data types:

Number: Used to represent numbers. Example: const num = 42;

String: Used to represent a sequence of characters. Example:

const name = "John";

Boolean: Used to represent a logical value of either true or false.

Example: const isMarried = true;

Undefined: Represents a value that has not been assigned.

Example: const age; console.log(age); // Output: undefined

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Null: Represents a value that is explicitly null. Example: const

address = null;

Symbol: Used to create unique identifiers for objects. Example:

const symbol = Symbol("description");

Object: Used to represent a collection of key-value pairs.

Example: const person = { name: "John", age: 30 };

In JavaScript, variables have a dynamic type and can change

their type based on the value assigned to them. The typeof

operator can be used to check the type of a variable.

Example:

const num = 42;

console.log(typeof num); // Output: "number"

const name = "John";

console.log(typeof name); // Output: "string"

const isMarried = true;

console.log(typeof isMarried); // Output: "boolean"

const age;

console.log(typeof age); // Output: "undefined"

Laurence Svekis https://basescripts.com/

https://basescripts.com/

const address = null;

console.log(typeof address); // Output: "object"

const symbol = Symbol("description");

console.log(typeof symbol); // Output: "symbol"

const person = { name: "John", age: 30 };

console.log(typeof person); // Output: "object"

Arithmetic Operations:

JavaScript supports basic arithmetic operations like addition,

subtraction, multiplication, and division. Here's an example:

let x = 10;

let y = 5;

let sum = x + y;

let difference = x - y;

let product = x * y;

let quotient = x / y;

let x = 10;

let y = 20;

let sum = x + y;

let difference = x - y;

Laurence Svekis https://basescripts.com/

https://basescripts.com/

let product = x * y;

let quotient = x / y;

let modulo = x % y;

let increment = x++;

let decrement = y--;

Conditional Statements:

Conditional statements are used to execute different blocks of

code based on conditions. The if-else statement is the most

common type of conditional statement in JavaScript. Here's an

example:

let x = 10;

if (x > 5) {

console.log("x is greater than 5");

} else {

console.log("x is not greater than 5");

}

let grade = 85;

if (grade >= 90) {

console.log("A");

} else if (grade >= 80) {

Laurence Svekis https://basescripts.com/

https://basescripts.com/

console.log("B");

} else if (grade >= 70) {

console.log("C");

} else {

console.log("F");

}

let day = "Sunday";

switch (day) {

case "Monday":

console.log("Today is Monday");

break;

case "Tuesday":

console.log("Today is Tuesday");

break;

case "Wednesday":

console.log("Today is Wednesday");

break;

case "Thursday":

console.log("Today is Thursday");

break;

case "Friday":

console.log("Today is Friday");

Laurence Svekis https://basescripts.com/

https://basescripts.com/

break;

case "Saturday":

console.log("Today is Saturday");

break;

default:

console.log("Today is Sunday");

}

Functions:

Functions are blocks of code that can be executed when they are

called. Here's an example:

function greeting() {

console.log("Hello World");

}

greeting();

function add(x, y) {

return x + y;

}

let result = add(10, 20);

console.log(result);

Laurence Svekis https://basescripts.com/

https://basescripts.com/

function greet(name) {

console.log("Hello " + name);

}

greet("John");

function calculateArea(width, height) {

return width * height;

}

let area = calculateArea(10, 20);

console.log(area);

function checkOddEven(num) {

if (num % 2 === 0) {

return "Even";

} else {

return "Odd";

}

}

let result = checkOddEven(10);

console.log(result);

Laurence Svekis https://basescripts.com/

https://basescripts.com/

function generateRandomNumber() {

return Math.floor(Math.random() * 100);

}

let randomNumber = generateRandomNumber();

console.log(randomNumber);

These are just some of the basics of JavaScript. There is much

more to learn, but these basics will give you a good foundation to

start building your skills.

JavaScript Loops:

JavaScript has two types of loops: for loops and while loops. Here

are examples of each:

For Loop:

for (const i = 0; i < 5; i++) {

console.log("Iteration " + (i + 1));

}

This code will output:

Iteration 1

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Iteration 2

Iteration 3

Iteration 4

Iteration 5

While Loop:

const i = 0;

while (i < 5) {

console.log("Iteration " + (i + 1));

i++;

}

This code will output:

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

In addition to these two loops, there is also the do-while loop,

which is similar to the while loop, but with a slight difference in

the way the condition is checked. Here's an example:

const i = 0;

do {

Laurence Svekis https://basescripts.com/

https://basescripts.com/

console.log("Iteration " + (i + 1));

i++;

} while (i < 5);

This code will output:

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

These are the basics of JavaScript loops. You can use them to

repeat a block of code multiple times based on conditions.

JavaScript Arrays

An array in JavaScript is a data structure that stores a collection

of values. You can access individual values of an array by

referring to their index number. Arrays are declared using square

brackets [] and items are separated by commas.

Here's an example of an array in JavaScript:

const fruits = ["apple", "banana", "cherry"];

Laurence Svekis https://basescripts.com/

https://basescripts.com/

JavaScript provides several built-in methods for working with

arrays. Here are some commonly used methods with examples:

length property: returns the number of elements in an array.

const fruits = ["apple", "banana", "cherry"];

console.log(fruits.length); // Output: 3

push() method: adds an element to the end of an array.

const fruits = ["apple", "banana", "cherry"];

fruits.push("orange");

console.log(fruits); // Output: ["apple", "banana",

"cherry", "orange"]

pop() method: removes the last element from an array and

returns it.

const fruits = ["apple", "banana", "cherry"];

const lastFruit = fruits.pop();

console.log(fruits); // Output: ["apple", "banana"]

console.log(lastFruit); // Output: "cherry"

unshift() method: adds an element to the beginning of an

array.

const fruits = ["apple", "banana", "cherry"];

fruits.unshift("peach");

Laurence Svekis https://basescripts.com/

https://basescripts.com/

console.log(fruits); // Output: ["peach", "apple",

"banana", "cherry"]

shift() method: removes the first element from an array and

returns it.

const fruits = ["apple", "banana", "cherry"];

const firstFruit = fruits.shift();

console.log(fruits); // Output: ["banana", "cherry"]

console.log(firstFruit); // Output: "apple"

splice() method: adds or removes elements from an array.

const fruits = ["apple", "banana", "cherry"];

fruits.splice(1, 0, "lemon", "lime");

console.log(fruits); // Output: ["apple", "lemon",

"lime", "banana", "cherry"]

These are some of the most commonly used array methods in

JavaScript. You can use these methods to manipulate arrays and

perform various operations on them.

JavaScript Objects

In JavaScript, an object is a collection of key-value pairs that

store data. Objects are declared using curly braces {} and the

keys and values are separated by colons.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Here's an example of an object in JavaScript:

const person = {

name: "John",

age: 30,

location: "San Francisco"

};

You can access the values of an object using the dot notation or

square bracket notation.

Here's an example of how to access the values of an object using

the dot notation:

const person = {

name: "John",

age: 30,

location: "San Francisco"

};

console.log(person.name); // Output: "John"

console.log(person.age); // Output: 30

console.log(person.location); // Output: "San

Francisco"

Here's an example of how to access the values of an object using

the square bracket notation:

Laurence Svekis https://basescripts.com/

https://basescripts.com/

const person = {

name: "John",

age: 30,

location: "San Francisco"

};

const nameKey = "name";

const ageKey = "age";

const locationKey = "location";

console.log(person[nameKey]); // Output: "John"

console.log(person[ageKey]); // Output: 30

console.log(person[locationKey]); // Output: "San

Francisco"

You can also add new properties or change the values of existing

properties in an object.

Here's an example of how to add a new property to an object:

const person = {

name: "John",

age: 30,

location: "San Francisco"

};

person.email = "john@example.com";

Laurence Svekis https://basescripts.com/

https://basescripts.com/

console.log(person); // Output: { name: "John", age:

30, location: "San Francisco", email:

"john@example.com" }

Here's an example of how to change the value of an existing

property in an object:

const person = {

name: "John",

age: 30,

location: "San Francisco"

};

person.age = 35;

console.log(person); // Output: { name: "John", age:

35, location: "San Francisco" }

Objects are widely used in JavaScript to store data and represent

real-world objects. You can use objects to create more complex

data structures and manage your data more effectively.

How to output a table into the console

console.table(): This method logs the data in a table format. For

example:

Laurence Svekis https://basescripts.com/

https://basescripts.com/

console.table([{a:1, b:2}, {a:3, b:4}]);

// Output:

// ┌─────────┬───┬───┐

// │ (index) │ a │ b │

// ├─────────┼───┼───┤

// │ 0 │ 1 │ 2 │

// │ 1 │ 3 │ 4 │

// └─────────┴───┴───┘

JavaScript String Methods

JavaScript provides several built-in methods for manipulating

strings, some of the commonly used ones are:

length: Returns the length of the string.

Example: var name = "John"; console.log(name.length); //

Output: 4

concat: Joins two or more strings together.

Example: var firstName = "John"; var lastName = "Doe";

console.log(firstName.concat(" ", lastName)); // Output: "John

Doe"

toUpperCase: Converts the string to uppercase.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Example: var name = "John"; console.log(name.toUpperCase());

// Output: "JOHN"

toLowerCase: Converts the string to lowercase.

Example: var name = "John"; console.log(name.toLowerCase());

// Output: "john"

charAt: Returns the character at the specified index.

Example: var name = "John"; console.log(name.charAt(0)); //

Output: "J"

indexOf: Returns the index of the first occurrence of the

specified value, or -1 if it is not found.

Example: var name = "John"; console.log(name.indexOf("o")); //

Output: 1

slice: Extracts a part of the string and returns it as a new string.

Example: var name = "John"; console.log(name.slice(0, 2)); //

Output: "Jo"

replace: Replaces the first occurrence of the specified value with

a new value.

Example: var name = "John"; console.log(name.replace("J",

"j")); // Output: "john"

Laurence Svekis https://basescripts.com/

https://basescripts.com/

trim: Removes whitespaces from both ends of the string.

Example: var name = " John "; console.log(name.trim()); //

Output: "John"

These are just a few of the many string methods available in

JavaScript, each with its own specific use case. Understanding

and utilizing these methods can greatly simplify string

manipulation tasks in your code.

JavaScript Number Methods

JavaScript provides several built-in methods for working with

numbers. Here are some common ones:

Number.isInteger(): This method returns true if the argument

is an integer and false otherwise.

For example:

console.log(Number.isInteger(3)); // Output: true

console.log(Number.isInteger(3.14)); // Output: false

Number.parseFloat(): This method parses a string argument

and returns a floating-point number.

For example:

Laurence Svekis https://basescripts.com/

https://basescripts.com/

console.log(Number.parseFloat("3.14")); // Output: 3.14

Number.parseInt(): This method parses a string argument and

returns an integer.

For example:

console.log(Number.parseInt("3.14")); // Output: 3

Number.toFixed(): This method returns a string representation

of a number with a specified number of decimal places.

For example:

console.log((3.14).toFixed(2)); // Output: 3.14

Number.toPrecision(): This method returns a string

representation of a number with a specified number of significant

digits.

For example:

console.log((3.14).toPrecision(2)); // Output: 3.1

Math.abs(): This method returns the absolute value of a

number.

For example:

Laurence Svekis https://basescripts.com/

https://basescripts.com/

console.log(Math.abs(-3.14)); // Output: 3.14

Math.ceil(): This method returns the smallest integer greater

than or equal to a number.

For example:

console.log(Math.ceil(3.14)); // Output: 4

Math.floor(): This method returns the largest integer less than

or equal to a number.

For example:

console.log(Math.floor(3.14)); // Output: 3

These methods can be used to perform various operations on

numbers in JavaScript.

JavaScript Math

JavaScript provides several built-in methods for working with

mathematical operations. Here are some common ones:

Math.abs(): This method returns the absolute value of a

number.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

For example:

console.log(Math.abs(-3.14)); // Output: 3.14

Math.ceil(): This method returns the smallest integer greater

than or equal to a number.

For example:

console.log(Math.ceil(3.14)); // Output: 4

Math.floor(): This method returns the largest integer less than

or equal to a number.

For example:

console.log(Math.floor(3.14)); // Output: 3

Math.max(): This method returns the largest of zero or more

numbers.

For example:

console.log(Math.max(3, 7, 4)); // Output: 7

Math.min(): This method returns the smallest of zero or more

numbers.

For example:

Laurence Svekis https://basescripts.com/

https://basescripts.com/

console.log(Math.min(3, 7, 4)); // Output: 3

Math.pow(): This method returns the value of a number raised

to the specified power.

For example:

console.log(Math.pow(3, 2)); // Output: 9

Math.random(): This method returns a random number

between 0 (inclusive) and 1 (exclusive).

For example:

console.log(Math.random()); // Output: a random number

between 0 and 1

Math.round(): This method returns the value of a number

rounded to the nearest integer.

For example:

console.log(Math.round(3.14)); // Output: 3

These methods can be used to perform various mathematical

operations in JavaScript.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Variables:

let name = "John Doe";

let age = 30;

let isStudent = false;

console.log(name);

console.log(age);

console.log(isStudent);

Explanation: In this code, we are declaring 3 variables using

the let keyword. The let keyword allows us to declare variables in

JavaScript. The first variable name is assigned a string value of

"John Doe". The second variable age is assigned a number value

of 30. The third variable isStudent is assigned a boolean value of

false. Finally, we log the values of these variables to the console

using the console.log method.

Arrays:

let names = ["John", "Jane", "Jim"];

console.log(names[0]);

console.log(names.length);

names.push("Jake");

console.log(names);

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Explanation: In this code, we are declaring an array named

names that contains three string values "John", "Jane", and

"Jim". The first console.log statement logs the first element of

the array to the console, which is "John". The second console.log

statement logs the length of the array to the console, which is 3.

The push method is then used to add another element "Jake" to

the end of the array. The final console.log statement logs the

updated array to the console.

Example : Array

let fruits = ["apple", "banana", "cherry"];

for (let i = 0; i < fruits.length; i++) {

console.log("I like " + fruits[i]);

}

Explanation: This example demonstrates the use of an array. We

create an array fruits containing three strings "apple", "banana",

and "cherry". We then use a for loop to iterate over each element

in the array and log a message to the console using

console.log(). This will log the message "I like apple", "I like

banana", and "I like cherry" to the console.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Example: Object

let car = {

make: "Toyota",

model: "Camry",

year: 2022,

};

console.log("I drive a " + car.year + " " + car.make +

" " + car.model);

Explanation: This example demonstrates the use of an object.

We create an object car with three properties make, model, and

year. We then use dot notation

Objects:

let person = {

name: "John Doe",

age: 30,

isStudent: false

};

console.log(person.name);

console.log(person.age);

console.log(person.isStudent);

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Explanation: In this code, we are declaring an object named

person with properties name, age, and isStudent. The properties

of the object store values "John Doe", 30, and false respectively.

The console.log statements log the values of the properties to

the console.

Conditional Statements:

let grade = 75;

if (grade >= 60) {

console.log("Passed");

} else {

console.log("Failed");

}

Explanation: In this code, we are declaring a variable grade

with a value of 75. We then use an if...else statement to

determine whether the student has passed or failed based on

their grade. If the value of grade is greater than or equal to 60,

the code inside the first block (i.e., console.log("Passed")) will be

executed, and the message "Passed" will be logged to the

console. If the value of grade is less than 60, the code inside the

second block (i.e., console.log("Failed")) will be executed, and

the message "Failed" will be logged to the console.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Functions:

function greet(name) {

console.log("Hello, " + name);

}

greet("John");

Explanation: In this code, we are defining a function named

greet that takes a parameter name. The function logs a greeting

message to the console by concatenating the string "Hello, " with

the value of the name parameter. The function is then called by

passing a string argument "John" to it, which results in the

message "Hello, John" being logged to the console.

Example: Simple Function

function greet(name) {

console.log("Hello " + name);

}

greet("John");

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Explanation: In this example, we have defined a simple function

greet that takes a single argument name and logs a greeting to

the console using console.log(). To call the function, we pass in

an argument, such as "John", to the function and invoke it. This

will log the message "Hello John" to the console.

Example: Conditional Statement

let num = 5;

if (num > 0) {

console.log(num + " is a positive number");

} else {

console.log(num + " is a negative number");

}

Explanation: This example demonstrates the use of a conditional

statement using an if statement. The code checks if the value of

num is greater than 0. If it is, the code inside the first set of

curly braces is executed, and the message "5 is a positive

number" is logged to the console. If the value of num is not

greater than 0, the code inside the else block is executed, and

the message "5 is a negative number" is logged to the console.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

String Methods:

let message = "Hello World";

console.log(message.toUpperCase());

console.log(message.includes("Hello"));

Explanation: In this code, we are declaring a variable message

with a string value of "Hello World". The first console.log

statement logs the result of calling the toUpperCase method on

the message string, which returns an uppercase version of the

string: "HELLO WORLD". The second console.log statement logs

the result of calling the includes method on the message string,

which checks if the string "Hello" is a part of the message string.

Since it is, the method returns true, which is then logged to the

console.

Ternary Operators:

let grade = 75;

let result = (grade >= 60) ? "Passed" : "Failed";

console.log(result);

Explanation: In this code, we are declaring a variable grade

with a value of 75 and using a ternary operator to assign a value

to the result variable based on the value of grade. The

Laurence Svekis https://basescripts.com/

https://basescripts.com/

expression (grade >= 60) ? "Passed" : "Failed" says that if grade

is greater than or equal to 60, the value of result should be

"Passed", otherwise it should be "Failed". The final console.log

statement logs the value of result to the console.

Using if statements:

let age = 25;

if (age >= 18) {

console.log("You are an adult.");

} else {

console.log("You are not an adult.");

}

Explanation: In this code, we are declaring a variable age with

the value 25. We are then using an if statement to determine if

the value of age is greater than or equal to 18. If it is, the first

console.log statement is executed, logging "You are an adult." to

the console. If not, the else block is executed, logging "You are

not an adult." to the console.

Using the switch statement:

let day = 2;

switch (day) {

Laurence Svekis https://basescripts.com/

https://basescripts.com/

case 1:

console.log("Monday");

break;

case 2:

console.log("Tuesday");

break;

case 3:

console.log("Wednesday");

break;

default:

console.log("Invalid day");

}

Explanation: In this code, we are using a switch statement to

control the flow of the program based on the value of a variable.

The switch statement takes an expression as an argument and

compares it to the case labels. If a match is found, the code

inside the corresponding case block is executed. If no match is

found, the code inside the default block is executed. In this case,

the value of day is 2, so the code inside the case 2 block is

executed and the result "Tuesday" is logged to the console.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Example of switch statements:

let grade = "A";

switch (grade) {

case "A":

console.log("Excellent");

break;

case "B":

console.log("Good");

break;

case "C":

console.log("Average");

break;

default:

console.log("Invalid grade");

break;

}

Explanation: In this code, we are declaring a variable grade with

the value "A". We are then using a switch statement to match

the value of grade with different cases. If the value of grade is

"A", the first console.log statement is executed, logging

"Excellent" to the console. If the value of grade is "B", the

second console.log statement is executed, logging "Good" to the

console. If the value of grade is "C", the third console.log

Laurence Svekis https://basescripts.com/

https://basescripts.com/

statement is executed, logging "Average" to the console. If the

value of grade does not match any of the cases, the default block

is executed, logging "Invalid grade" to the console.

Using an object to store data:

let person = {

name: "John",

age: 30,

occupation: "Teacher"

};

console.log(person.name);

Explanation: In this code, we are using an object to store data

about a person. An object is a collection of key-value pairs, and

in this case, the keys are name, age, and occupation. The values

are the corresponding data for each key. To access the data

stored in an object, we use dot notation, such as person.name to

access the value of the name key. The value of person.name is

logged to the console using the console.log() method.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Using a function to define a reusable piece of

code:

function sayHello(name) {

console.log(`Hello, ${name}!`);

}

sayHello("John");

Explanation: In this code, we are using a function to define a

reusable piece of code. A function is a block of code that can be

executed repeatedly with different arguments. In this case, the

function sayHello takes an argument name and logs a greeting to

the console using the console.log() method. To call the function,

we use its name followed by a set of parentheses, such as

sayHello("John"). This causes the function to run and the

greeting "Hello, John!" is logged to the console.

Anonymous Functions:

let greet = function(name) {

console.log("Hello, " + name);

};

greet("John");

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Explanation: In this code, we are declaring an anonymous

function and assigning it to the variable greet. The function takes

a parameter name and logs a greeting message to the console

by concatenating the string "Hello, " with the value of the name

parameter. The function is then called by passing a string

argument "John" to it, which results in the message "Hello, John"

being logged to the console.

Arrow Functions:

let add = (a, b) => a + b;

console.log(add(2, 3));

Explanation: In this code, we are declaring an arrow function

named add that takes two parameters, a and b, and returns their

sum. The final console.log statement calls the add function,

passing the values 2 and 3 as arguments, and logs the result to

the console, which is 5.

Example: For Loop

for (let i = 0; i < 5; i++) {

console.log("The value of i is: " + i);

}

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Explanation: This example demonstrates the use of a for loop.

The loop initializes the variable i to 0 and runs the loop as long

as i is less than 5. The loop increments the value of i by 1 with

each iteration. This will log the message "The value of i is: 0",

"The value of i is: 1", "The value of i is: 2", "The value of i is: 3",

and "The value of i is: 4" to the console.

While Loops:

let i = 0;

while (i < 5) {

console.log(i);

i++;

}

Explanation: In this code, we are using a while loop to log the

values 0 to 4 to the console. The loop initializes a variable i with

a value of 0. The condition in the loop checks if i is less than 5. If

the condition is true, the code inside the loop will be executed,

and the value of i will be logged to the console.

Using a for loop to iterate through an array:

let numbers = [1, 2, 3, 4, 5];

for (let i = 0; i < numbers.length; i++) {

Laurence Svekis https://basescripts.com/

https://basescripts.com/

console.log(numbers[i]);

}

Explanation: In this code, we are using a for loop to iterate

through an array of numbers. The loop uses the variable i as a

counter, and it continues to run as long as i is less than the

length of the numbers array. On each iteration of the loop, the

current value of numbers[i] is logged to the console using the

console.log() method.

Using a while loop to calculate the factorial of

a number:

let number = 5;

let factorial = 1;

while (number > 1) {

factorial *= number;

number--;

}

console.log(factorial);

Explanation: In this code, we are using a while loop to calculate

the factorial of a number. The while loop continues to run as long

as the value of number is greater than 1. On each iteration of the

Laurence Svekis https://basescripts.com/

https://basescripts.com/

loop, the value of factorial is multiplied by number, and then

number is decremented by 1. The final value of factorial is the

factorial of the original number, and it is logged to the console

using the console.log() method.

Loops:

for (let i = 0; i < 5; i++) {

console.log(i);

}

Explanation: In this code, we are using a for loop to log the

values 0 to 4 to the console. The loop initializes a variable i with

a value of 0. The condition in the loop checks if i is less than 5. If

the condition is true, the code inside the loop will be executed,

and the value of i will be logged to the console. The final

statement in the loop increments the value of i by 1. This

process continues until i is no longer less than 5, at which point

the loop terminates. The result is that the values 0 to 4 are

logged to the console.

Using the for loop:

for (let i = 0; i < 10; i++) {

console.log(i);

Laurence Svekis https://basescripts.com/

https://basescripts.com/

}

Explanation: In this code, we are using a for loop to iterate over

a range of values. The loop starts by declaring a variable i with

the value 0. The loop will then continue to execute as long as i is

less than 10. At the end of each iteration, the value of i is

incremented by 1. This means that on each iteration, the value of

i is logged to the console using the console.log() method. The

result will be the numbers 0 through 9 logged to the console.

Using the while loop:

let i = 0;

while (i < 10) {

console.log(i);

i++;

}

Explanation: In this code, we are using a while loop to iterate

over a range of values. The loop starts by declaring a variable i

with the value 0. The loop will then continue to execute as long

as i is less than 10. At the end of each iteration, the value of i is

incremented by 1. This means that on each iteration, the value of

i is logged to the console using the console.log() method. The

result will be the numbers 0 through 9 logged to the console.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

For-of Loop:

let numbers = [1, 2, 3, 4, 5];

for (let number of numbers) {

console.log(number);

}

Explanation: In this code, we are declaring an array named

numbers with 5 elements. We are then using a for-of loop to log

each element of the numbers array to the console. The for-of

loop creates a variable named number that takes on the value of

each element in the numbers array one at a time, and the code

inside the loop logs the value of number to the console.

Array Methods:

let numbers = [1, 2, 3, 4, 5];

console.log(numbers.length);

console.log(numbers.slice(1, 3));

Explanation: In this code, we are declaring an array named

numbers with 5 elements. The first console.log statement logs

the length of the array, which is 5. The second console.log

statement logs the result of calling the slice method on the

numbers array, which returns a new array containing elements

Laurence Svekis https://basescripts.com/

https://basescripts.com/

from the original array at indices 1 to 2 (the second and third

elements).

Object Destructuring:

let person = {

name: "John Doe",

age: 30,

isStudent: false

};

let { name, age } = person;

console.log(name);

console.log(age);

Explanation: In this code, we are declaring an object named

person with properties name, age, and isStudent. Then, using

object destructuring, we are extracting the name and age

properties from the person object and assigning them to

separate variables with the same names. The final console.log

statements log the values of the name and age variables to the

console.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Spread Operator:

let a = [1, 2, 3];

let b = [4, 5, 6];

let numbers = [...a, ...b];

console.log(numbers);

Explanation: In this code, we are declaring two arrays a and b

with 3 elements each. We are then using the spread operator to

concatenate the two arrays into a new array named numbers.

The final console.log statement logs the numbers array to the

console, which contains elements from both a and b.

Using the Date object:

let now = new Date();

console.log(now);

console.log(now.toLocaleString());

Explanation: In this code, we are creating a Date object with the

current date and time using the new Date() constructor. The first

console.log statement logs the Date object as a string. The

second console.log statement logs the same Date object, but

formatted as a human-readable string using the toLocaleString()

method.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Example of Date object:

let date = new Date();

console.log(date);

Explanation: In this code, we are using the Date object to get

the current date and time. The new Date() constructor creates a

new Date object, which represents the current date and time.

The result is logged to the console using the console.log()

method.

Using the Math object:

let number = Math.round(2.5);

console.log(number);

Explanation: In this code, we are using the Math object to

perform mathematical operations. The Math.round() method

takes a number as an argument and returns the rounded value.

In this case, the number 2.5 is rounded to 3. The result is logged

to the console using the console.log() method.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Example of Math object:

console.log(Math.PI);

console.log(Math.ceil(3.14));

console.log(Math.floor(3.14));

Explanation: In this code, we are using the Math object to

perform mathematical operations. The first console.log statement

logs the value of π (Pi) from the Math object. The second

console.log statement logs the smallest integer that is greater

than or equal to 3.14 using the ceil() method. The third

console.log statement logs the largest integer that is less than or

equal to 3.14 using the floor() method.

Using try and catch statements:

try {

let x = y;

console.log(x);

} catch (error) {

console.error(error);

}

Explanation: In this code, we are using a try and catch

statement to handle errors. Within the try block, we are

Laurence Svekis https://basescripts.com/

https://basescripts.com/

attempting to assign the value of y to a variable x. However, y

has not been defined, so this operation will result in a

ReferenceError. This error will be caught by the catch block,

which logs the error to the console using the console.error()

method. This is useful for handling unexpected errors in your

code and allowing your program to continue running, rather than

crashing.

Try-catch statement Example:

try {

let num = Number("hello");

} catch (error) {

console.log(error.message);

}

Explanation: In this code, we are using the try-catch statement

to handle errors. The try block contains code that might throw an

error, while the catch block contains code that is executed when

an error is thrown. In this case, the Number("hello") expression

tries to convert the string "hello" to a number, but since this is

not possible, an error is thrown. The error is caught by the catch

block and its message property is logged to the console using the

console.log() method.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Using the map() method:

let numbers = [1, 2, 3, 4, 5];

let doubled = numbers.map(function(num) {

return num * 2;

});

console.log(doubled);

Explanation: In this code, we are using the map() method to

transform an array of numbers. The map() method takes a

callback function as an argument and applies that function to

each element in the array. In this case, the callback function

doubles each element in the numbers array. The result is a new

array doubled that contains the doubled values. The final

console.log statement logs the doubled array to the console.

Using the filter() method:

let numbers = [1, 2, 3, 4, 5];

let evens = numbers.filter(function(num) {

return num % 2 === 0;

});

console.log(evens);

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Explanation: In this code, we are using the filter() method to

select certain elements from an array based on a condition. The

filter() method takes a callback function as an argument and

applies that function to each element in the array. In this case,

the callback function checks if each element in the numbers

array is even. The result is a new array evens that contains only

the even numbers from the numbers array. The final console.log

statement logs the evens array to the console.

Using the reduce() method:

let numbers = [1, 2, 3, 4, 5];

let sum = numbers.reduce(function(accumulator,

currentValue) {

return

let numbers = [1, 2, 3, 4, 5];

let sum = numbers.reduce(function(accumulator,

currentValue) {

return accumulator + currentValue;

});

console.log(sum);

Explanation: In this code, we are using the reduce() method to

reduce an array of numbers to a single value. The reduce()

Laurence Svekis https://basescripts.com/

https://basescripts.com/

method takes a callback function as an argument and applies

that function to each element in the array. The first argument to

the callback function is an accumulator, which is initialized to the

first value in the array. The second argument is the current value

being processed. In this case, the callback function adds the

current value to the accumulator. The result is a single value sum

that is the sum of all the numbers in the numbers array. The final

console.log statement logs the sum to the console.

Using the Array.includes() method:

let numbers = [1, 2, 3, 4, 5];

let result = numbers.includes(3);

console.log(result);

Explanation: In this code, we are using the Array.includes()

method to check if an array contains a certain value. The

Array.includes() method takes a value as an argument and

returns true if the array contains that value and false otherwise.

In this case, the value 3 is included in the numbers array, so the

result is `true

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Using a class to define a blueprint for

creating objects:

class Person {

constructor(name, age) {

this.name = name;

this.age = age;

}

sayHello() {

console.log(`Hello, my name is ${this.name} and I

am ${this.age} years old.`);

}

}

let john = new Person("John", 30);

john.sayHello();

Explanation: In this code, we are using a class to define a

blueprint for creating objects. A class is a blueprint for creating

objects with similar properties and methods. In this case, the

Person class has a constructor that takes two arguments, name

and age, and sets them as properties of the object being

created. The class also has a method sayHello that logs a

message to the console using the console.log() method. To

create an object using a class, we use the new keyword, such as

let john = new Person("John", 30). This creates a new Person

Laurence Svekis https://basescripts.com/

https://basescripts.com/

object with the properties name set to "John" and age set to 30.

To call the sayHello method on the object, we use dot notation,

such as john.sayHello(). This causes the message "Hello, my

name is John and I am 30 years old." to be logged to the

console.

Example: Higher-Order Function

function multiplyBy(factor) {

return function (number) {

return number * factor;

};

}

let double = multiplyBy(2);

console.log(double(5)); // 10

Explanation: This example demonstrates the use of a

higher-order function. A higher-order function is a function that

returns another function. In this example, the multiplyBy

function takes a factor as its argument and returns a new

function that takes a number as its argument. The returned

function calculates and returns the product of the number and

factor. We then assign the returned function to the variable

double and call it with an argument 5. This will log the result 10

to the console.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Example: Closure

function outerFunction() {

let counter = 0;

return function innerFunction() {

counter++;

console.log(counter);

};

}

let counterFunction = outerFunction();

counterFunction(); // 1

counterFunction(); // 2

counterFunction(); // 3

Explanation: This example demonstrates the use of a closure. A

closure is a function that has access to variables in its outer

scope even after the outer function has returned. In this

example, the outerFunction returns the innerFunction which logs

the value of counter to the console. The variable counter is

declared in the outer scope and is accessible to the inner

function. We assign the returned function to the variable

counterFunction and call it multiple times. This will log the values

Laurence Svekis https://basescripts.com/

https://basescripts.com/

1, 2, and 3 to the console, indicating that the inner function still

has access to the counter variable even after the outer function

has returned.

Example: Destructuring

let person = {

name: "John Doe",

age: 30,

address: {

street: "123 Main St",

city: "San Francisco",

state: "CA",

},

};

let { name, age, address: { city } } = person;

console.log(name); // "John Doe"

console.log(age); // 30

console.log(city); // "San Francisco"

Explanation: This example demonstrates the use of destructuring

in JavaScript. Destructuring allows you to extract values from

objects and arrays and assign them to separate variables. In this

example, we have an object person with three properties: name,

Laurence Svekis https://basescripts.com/

https://basescripts.com/

age, and address. We use destructuring to extract the values of

name, age, and city properties and assign them to separate

variables. This will log the values "John Doe", 30, and "San

Francisco" to the console.

Example: Promises

let promise = new Promise(function (resolve, reject) {

setTimeout(function () {

resolve("Success!");

}, 1000);

});

promise

.then(function (result) {

console.log(result); // "Success!"

})

.catch(function (error) {

console.error(error);

});

Explanation: This example demonstrates the use of Promises in

JavaScript. A Promise is a returned object representing the

eventual completion or failure of an asynchronous operation. In

this example, we create a new Promise using the Promise

Laurence Svekis https://basescripts.com/

https://basescripts.com/

constructor. The constructor takes a callback function with

resolve and reject parameters. We use the setTimeout function

to wait for 1 second and then call resolve with a string value of

"Success!". The returned Promise object has a then method that

takes a success callback function as its argument. This function

will be called if the Promise is resolved. The Promise object also

has a catch method that takes an error callback function as its

argument. This function will be called if the Promise is rejected.

In this example, the Promise is resolved, so the then method

logs the value "Success!" to the console.

Example: Generators

function* generator() {

yield 1;

yield 2;

yield 3;

}

let iterator = generator();

console.log(iterator.next().value); // 1

console.log(iterator.next().value); // 2

console.log(iterator.next().value); // 3

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Explanation: This example demonstrates the use of generators in

JavaScript. A generator is a special type of function that can be

paused and resumed multiple times. In this example, we create

a generator function using the function* syntax. The generator

function uses the yield keyword to return a value each time it is

resumed. We create an iterator using the generator function and

use the next method to get the next value from the iterator. This

will log the values 1, 2, and 3 to the console, indicating that the

generator has been resumed and returned the values one by

one.

Example: Asynchronous Iteration

async function asyncIteration() {

let array = [1, 2, 3];

for await (const value of array) {

console.log(value);

}

}

asyncIteration();

// Output:

// 1

// 2

// 3

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Explanation: This example demonstrates the use of

asynchronous iteration in JavaScript. Asynchronous iteration

allows us to iterate over asynchronous data sources, such as an

async function or a Promise, in a synchronous-like manner. In

this example, we create an async function that contains a

for-await-of loop. The for-await-of loop is used to iterate over the

array of values. The loop logs each value to the console. The use

of the async keyword ensures that the loop will wait for each

iteration to complete before moving on to the next one.

Example: Map and Set

let map = new Map();

map.set("key1", "value1");

map.set("key2", "value2");

console.log(map.get("key1")); // "value1"

console.log(map.size); // 2

let set = new Set();

set.add("value1");

set.add("value2");

console.log(set.has("value1")); // true

console.log(set.size); // 2

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Explanation: This example demonstrates the use of the Map and

Set data structures in JavaScript. A Map is an ordered collection

of key-value pairs, while a Set is an unordered collection of

unique values. In this example, we create a Map and use the set

method to add two key-value pairs. We use the get method to

retrieve the value associated with a specific key and the size

property to get the number of elements in the Map. We also

create a Set and use the add method to add two values. We use

the has method to check if a value exists in the Set and the size

property to get the number of elements in the Set.

Example: WeakMap and WeakSet

let weakMap = new WeakMap();

let key = {};

weakMap.set(key, "value");

console.log(weakMap.has(key)); // true

key = null;

console.log(weakMap.has(key)); // false

let weakSet = new WeakSet();

let value = {};

weakSet.add(value);

console.log(weakSet.has(value)); // true

value = null;

Laurence Svekis https://basescripts.com/

https://basescripts.com/

console.log(weakSet.has(value)); // false

Explanation: This example demonstrates the use of the WeakMap

and WeakSet data structures in JavaScript. A WeakMap is a

collection of key-value pairs where the keys are objects and the

values can be any value. A WeakSet is a collection of objects.

Unlike Map and Set, the entries in a WeakMap or WeakSet do not

prevent the objects from being garbage collected. In this

example, we create a WeakMap and use the set method to add a

key-value pair. We use the has method to check if the key exists

in the WeakMap. We then set the key to null, which makes it

eligible for garbage collection. We check the has method again

and it returns false, as the key has been garbage collected. We

also create a WeakSet and use the add method to add a value.

We use the has method to check if the value exists in the

WeakSet. We then set the value to null, which makes it eligible

for garbage collection. We check the has method again and it

returns false, as the value has been garbage collected.

Example: Object Destructuring

let obj = { x: 1, y: 2, z: 3 };

let { x, y, z } = obj;

console.log(x, y, z); // 1 2 3

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Explanation: This example demonstrates the use of object

destructuring in JavaScript. Object destructuring allows us to

extract values from an object and assign them to variables with

the same name as the object properties. In this example, we

create an object with properties x, y, and z. We then use

destructuring to extract the values of these properties and assign

them to variables with the same name. The destructured

variables x, y, and z now hold the values of the respective

properties.

Example: Class and Inheritance

class Shape {

constructor(width, height) {

this.width = width;

this.height = height;

}

getArea() {

return this.width * this.height;

}

}

class Rectangle extends Shape {

constructor(width, height) {

super(width, height);

Laurence Svekis https://basescripts.com/

https://basescripts.com/

}

}

let rectangle = new Rectangle(10, 20);

console.log(rectangle.getArea()); // 200

Explanation: This example demonstrates the use of classes and

inheritance in JavaScript. A class is a blueprint for creating

objects with similar properties and methods. In this example, we

create a Shape class with a constructor method that takes width

and height as arguments and sets them as properties of the

object. We also add a getArea method that returns the product of

width and height. We then create a Rectangle class that extends

the Shape class. The Rectangle class has its own constructor

method that calls the super method to pass the width and height

arguments to the Shape class. We create an instance of the

Rectangle class and use the getArea method to get the area of

the rectangle.

JavaScript Classes

JavaScript added class syntax with ECMAScript 6 (ES6) as a way

to write reusable code and create objects. A class is a blueprint

for creating objects that have similar properties and methods.

Here's an example of a class in JavaScript:

Laurence Svekis https://basescripts.com/

https://basescripts.com/

class Person {

constructor(name, age) {

this.name = name;

this.age = age;

}

greet() {

console.log(`Hello, my name is ${this.name} and I

am ${this.age} years old.`);

}

}

In the above example, the Person class has two properties: name

and age, and a method greet that prints a greeting message.

To create an object from this class, you use the new operator and

call the constructor function:

const person = new Person("John", 30);

person.greet();

// Output: Hello, my name is John and I am 30 years

old.

You can also extend a class to create a subclass and inherit

properties and methods from the parent class:

class Student extends Person {

Laurence Svekis https://basescripts.com/

https://basescripts.com/

constructor(name, age, major) {

super(name, age);

this.major = major;

}

study() {

console.log(`I am studying ${this.major}.`);

}

}

const student = new Student("Jane", 20, "Computer

Science");

student.greet();

// Output: Hello, my name is Jane and I am 20 years

old.

student.study();

// Output: I am studying Computer Science.

In the above example, the Student class extends the Person class

and adds a new property major and a method study. The super

keyword is used to call the constructor of the parent class and

pass along the required properties.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Classes in JavaScript provide a way to write organized and

reusable code, making it easier to maintain and extend your

codebase.

Regular Expression (RegExp)

A Regular Expression (RegExp) is a pattern that specifies a set of

strings. JavaScript provides built-in support for regular

expressions with the RegExp object.

Here's an example of how to use regular expressions in

JavaScript:

let string = "Hello, World!";

let pattern = /Hello/;

let result = pattern.test(string);

console.log(result); // Output: true

In this example, we define a string "Hello, World!" and a regular

expression pattern /Hello/. We use the test() method of the

RegExp object to test if the string matches the pattern. The result

is a boolean value indicating whether the string matches the

pattern.

You can also use the match() method of the String object to find

all matches of a regular expression pattern in a string:

Laurence Svekis https://basescripts.com/

https://basescripts.com/

let string = "Hello, World! Hello, JavaScript!";

let pattern = /Hello/g;

let result = string.match(pattern);

console.log(result); // Output: ["Hello", "Hello"]

In this example, we add the g (global) flag to the pattern to find

all matches in the string, instead of just the first match. The

result is an array of strings containing all matches of the pattern

in the string.

Regular expressions can be a powerful tool for matching and

manipulating strings in JavaScript.

Best Practices JavaScript Code

Use const instead of var or let whenever possible. This helps

prevent accidental modification of variables.

Example:

const name = "John";

name = "Jane"; // Error: "name" is read-only

Declare variables as close as possible to their first use. This

reduces their scope and makes the code easier to understand.

Example:

Laurence Svekis https://basescripts.com/

https://basescripts.com/

function example() {

let name;

// ...

name = "John";

// ...

}

Use let instead of var for block-scoped variables. var is

function-scoped, which can lead to unexpected behavior in certain

cases.

Example:

if (true) {

let name = "John";

}

console.log(name); // Error: "name" is not defined

Use arrow functions instead of traditional functions whenever

possible. They provide a concise and easier-to-read syntax for

anonymous functions.

Example:

const greet = name => console.log(`Hello, ${name}!`);

greet("John"); // Output: Hello, John!

Use forEach instead of for loops whenever possible. It's concise,

readable, and eliminates the need for manual index increments.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Example:

const names = ["John", "Jane", "Jim"];

names.forEach(name => console.log(name));

// Output:

// John

// Jane

// Jim

Avoid using global variables whenever possible. They can easily

lead to naming conflicts and hard-to-debug bugs.

Example:

let name = "John";

// ...

function example() {

name = "Jane"; // Modifying global variable

}

Use Object.freeze to prevent accidental modification of objects.

Example:

const person = { name: "John", age: 30 };

Object.freeze(person);

person.name = "Jane"; // Error: "person" is read-only

Use try-catch blocks to handle errors. It makes it easier to debug

code and provide meaningful error messages to users.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Example:

try {

// Code that might throw an error

} catch (error) {

console.error(error);

}

Use template literals instead of concatenation for string

interpolation. They provide a more readable and

easier-to-maintain syntax.

Example:

const name = "John";

console.log(`Hello, ${name}!`); // Output: Hello, John!

Use modern JavaScript features and syntax whenever possible,

such as destructuring, spread operators, and async/await. They

make code more concise, readable, and easier to maintain.

Example:

const [firstName, lastName] = ["John", "Doe"];

console.log(firstName, lastName); // Output: John Doe

By following these best practices, you can write efficient,

maintainable, and scalable JavaScript code.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

closure in JavaScript

What is closure in JavaScript and how can it be used to create

private variables?

A closure is a function that has access to variables in its outer

scope, even after the outer function has returned. Closures can

be used to create private variables in JavaScript by returning an

inner function that has access to the variables declared in the

outer function. Here's an example:

function createCounter() {

let count = 0;

return function() {

count++;

return count;

};

}

const counter = createCounter();

console.log(counter()); // 1

console.log(counter()); // 2

console.log(counter()); // 3

Laurence Svekis https://basescripts.com/

https://basescripts.com/

In this example, the createCounter function declares a private

variable count and returns an inner function that increments

count every time it's called. The returned inner function has

access to the count variable even after the createCounter function

has returned, allowing it to maintain its value between

invocations.

hoisting in JavaScript

What is hoisting in JavaScript and how does it work?

Hoisting is a behavior in JavaScript where variable and function

declarations are moved to the top of their scope. This means that

variables can be used before they are declared, and functions can

be called before they are defined. Here's an example:

console.log(x); // undefined

var x = 10;

In this example, even though the x variable is declared after it is

used, the JavaScript engine hoists the declaration to the top of

the scope, so the code runs as if it were written like this:

var x;

console.log(x); // undefined

Laurence Svekis https://basescripts.com/

https://basescripts.com/

x = 10;

Hoisting also applies to function declarations:

myFunction(); // "Hello, World!"

function myFunction() {

console.log("Hello, World!");

}

In this example, the function declaration for myFunction is

hoisted to the top of the scope, so it can be called before it is

defined.

difference between null and undefined in

JavaScript

What is the difference between null and undefined in JavaScript?

In JavaScript, null and undefined are both values that represent

the absence of a value. However, there is a subtle difference

between the two.

undefined is a value that is automatically assigned to a variable

when it is declared but not assigned a value:

let x;

Laurence Svekis https://basescripts.com/

https://basescripts.com/

console.log(x); // undefined

null, on the other hand, is a value that must be

explicitly assigned to a variable:

let y = null;

console.log(y); // null

In other words, undefined is a default value assigned to a variable

when no value is explicitly assigned, while null is a value that can

be explicitly assigned to represent the absence of a value.

difference between a for loop and forEach in

JavaScript

What is the difference between a for loop and forEach in

JavaScript?

In JavaScript, both for loops and the forEach method are used to

iterate over arrays. However, there are some key differences

between the two.

for loops allow you to access the current index and value of each

element in the array, and you can also use break and continue

statements to control the flow of the loop:

Laurence Svekis https://basescripts.com/

https://basescripts.com/

const numbers = [1, 2, 3, 4, 5];

for (let i = 0; i < numbers.length; i++) {

console.log(numbers[i]);

}

In this example, the for loop iterates over the numbers array, and

the console.log statement logs the value of each element in the

array.

The forEach method, on the other hand, is a higher-order function

that is called on an array and takes a callback function as an

argument. The callback function is invoked for each element in

the array:

const numbers = [1, 2, 3, 4, 5];

numbers.forEach(function(number) {

console.log(number);

});

In this example, the forEach method is called on the numbers

array, and the anonymous callback function logs the value of each

element in the array.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

The main difference between the two is that for loops offer more

control over the flow of the loop, while forEach is a simpler and

more concise way to iterate over an array.

difference between == and === in JavaScript

What is the difference between == and === in JavaScript?

In JavaScript, there are two comparison operators: == (loose

equality) and === (strict equality).

The == operator performs type coercion before checking for

equality, which means that it converts the operands to the same

type before checking for equality:

console.log(1 == "1"); // true

console.log(true == 1); // true

In these examples, the == operator converts the string "1" to the

number 1, and the boolean value true to the number 1, before

checking for equality, so both expressions return true.

The === operator, on the other hand, does not perform type

coercion and checks for equality without converting the operands

to the same type:

Laurence Svekis https://basescripts.com/

https://basescripts.com/

console.log(1 === "1"); // false

console.log(true === 1); // false

In these examples, the === operator does not convert the string

"1" or the boolean value true to the number 1, so both

expressions return false.

It is generally recommended to use the === operator in

JavaScript, as it ensures that equality is checked without any type

coercion, leading to more predictable results.

Coding Function that returns a sum of the

elements

Write a function that takes an array of numbers and returns the

sum of its elements.

function sumArray(numbers) {

let sum = 0;

for (let i = 0; i < numbers.length; i++) {

sum += numbers[i];

}

return sum;

}

Laurence Svekis https://basescripts.com/

https://basescripts.com/

const numbers = [1, 2, 3, 4, 5];

console.log(sumArray(numbers)); // 15

In this example, the sumArray function takes an array of numbers

as an argument and uses a for loop to iterate over the array,

adding each element to the sum variable. The function returns

the sum of the elements in the array.

Function that takes an array of strings returns

string lengths

Write a function that takes an array of strings and returns an

array of the lengths of each string.

function stringLengths(strings) {

let lengths = [];

strings.forEach(function(string) {

lengths.push(string.length);

});

return lengths;

}

const strings = ['hello', 'world', 'foo', 'bar'];

Laurence Svekis https://basescripts.com/

https://basescripts.com/

console.log(stringLengths(strings)); // [5, 5, 3, 3]

In this example, the stringLengths function takes an array of

strings as an argument and uses the forEach method to iterate

over the array. For each string, the length is determined using the

length property and pushed onto the lengths array. The function

returns the array of lengths.

strict mode example

Use strict mode to enforce modern JavaScript syntax and catch

errors early:

'use strict';

Use const and let

Always declare variables with const or let, rather than var:

// Use let

let name = 'John Doe';

// Use const

const PI = 3.14;

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Use Arrows functions

Use arrow functions instead of function for cleaner and concise

code:

// Function expression

const multiply = (a, b) => a * b;

// Implicit return

const square = x => x * x;

Use Destructuring to get values from arrays

Make use of destructuring to extract values from arrays and

objects into variables:

// Destructuring arrays

const colors = ['red', 'green', 'blue'];

const [first, second, third] = colors;

// Destructuring objects

const person = {

name: 'John Doe',

age: 30,

job: 'Software Engineer'

Laurence Svekis https://basescripts.com/

https://basescripts.com/

};

const { name, age, job } = person;

Use template literals

Use template literals for string concatenation and embedding

expressions:

const name = 'John Doe';

const message = `Hello, ${name}!`;

Use forEach over for loop

Prefer forEach over for loop for simple iterations:

const numbers = [1, 2, 3, 4, 5];

numbers.forEach(number => console.log(number));

use of higher-order functions

Make use of higher-order functions like map, filter, and reduce to

process arrays:

const numbers = [1, 2, 3, 4, 5];

Laurence Svekis https://basescripts.com/

https://basescripts.com/

// Use map

const double = numbers.map(number => number * 2);

// Use filter

const even = numbers.filter(number => number % 2 ===

0);

// Use reduce

const sum = numbers.reduce((acc, number) => acc +

number, 0);

Avoid Global Variables

Avoid using global variables and always use const or let to scope

variables:

// Global variable (not recommended)

let name = 'John Doe';

// Scoped variable (recommended)

function sayHello() {

const name = 'John Doe';

console.log(`Hello, ${name}!`);

Laurence Svekis https://basescripts.com/

https://basescripts.com/

}

Avoid Naming Collisions

Use modules to organize your code and avoid naming collisions:

// math.js

export const PI = 3.14;

export const add = (a, b) => a + b;

// main.js

import { PI, add } from './math.js';

console.log(PI); // 3.14

console.log(add(1, 2)); // 3

Initialize variables with default values

Always initialize variables with default values to avoid undefined

values:

// Default value

let name = 'John Doe';

// Default value with destructuring

Laurence Svekis https://basescripts.com/

https://basescripts.com/

const person = {

name = 'John Doe',

age: 30

};

const { name, age = 0 } = person;

Use spread operator

Use spread operator to combine arrays:

const a = [1, 2, 3];

const b = [4, 5, 6];

const c = [...a, ...b]; // [1, 2, 3, 4, 5, 6]

Use spread operator to combine arrays: The spread operator (...)

can be used to combine arrays into a new array. The operator

"spreads" the elements of the original arrays into a new array. For

example, in the following code, two arrays a and b are combined

into a new array c:

Use of default parameters

Make use of default parameters to handle missing arguments:

Laurence Svekis https://basescripts.com/

https://basescripts.com/

const greet = (name = 'stranger') =>

console.log(`Hello, ${name}!`);

greet(); // Hello, stranger!

greet('John'); // Hello, John!

Make use of default parameters to handle missing arguments:

Default parameters allow you to provide a default value for a

function argument in case the argument is not passed when the

function is called. This can be useful for handling missing

arguments and preventing errors.

Use rest operator

Use rest operator to pass multiple arguments as an array:

const add = (...numbers) => numbers.reduce((a, b) => a

+ b, 0);

console.log(add(1, 2, 3, 4, 5)); // 15

Use rest operator to pass multiple arguments as an array: The

rest operator (...) can be used to gather all remaining arguments

into an array. This is useful for passing a variable number of

arguments to a function.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Use object literals

Use object literals to create objects:

const name = 'John Doe';

const age = 30;

const person = { name, age };

Use object literals to create objects: Object literals are a concise

and convenient way to create objects in JavaScript. The syntax is

similar to an array literal, but with curly braces ({}) instead of

square brackets ([]). You can also use property value shorthand

to create properties using the same name as the variable.

Use destructuring with rest operator

Use destructuring with rest operator to extract remaining values:

const colors = ['red', 'green', 'blue', 'yellow',

'orange'];

const [first, second, ...rest] = colors;

console.log(first); // red

console.log(second); // green

console.log(rest); // [blue, yellow, orange]

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Use destructuring with rest operator to extract remaining values:

Destructuring is a powerful feature in JavaScript that allows you

to extract values from arrays and objects and assign them to

variables. You can use the rest operator (...) in combination with

destructuring to extract remaining values from an array.

Use of async/await

Make use of async/await for asynchronous programming:

const fetchData = async () => {

try {

const response = await

fetch('https://jsonplaceholder.typicode.com/posts');

const data = await response.json();

console.log(data);

} catch (error) {

console.error(error);

}

};

fetchData();

Make use of async/await for asynchronous programming: The

async/await syntax provides a convenient way to write

asynchronous code that is easier to read and debug than

Laurence Svekis https://basescripts.com/

https://basescripts.com/

traditional callback-based code. An async function returns a

Promise and can be awaited to pause execution until the Promise

is resolved.

Use destructuring with default values

Use destructuring with default values to handle missing

properties:

const person = {

name: 'John Doe'

};

const { name, age = 30 } = person;

console.log(name); // John Doe

console.log(age); // 30

Use destructuring with default values: Destructuring can also be

used to provide default values for variables in case the values are

undefined. For example:

const getUser = ({ name = 'stranger', age = 'unknown' }

= {}) =>

console.log(`Name: ${name}, Age: ${age}`);

getUser({ name: 'John Doe', age: 30 }); // Name: John

Doe, Age: 30

Laurence Svekis https://basescripts.com/

https://basescripts.com/

getUser(); // Name: stranger, Age: unknown

Use named exports

Use named exports to export multiple values from a module:

// utils.js

export const PI = 3.14;

export const add = (a, b) => a + b;

// main.js

import { PI, add } from './utils.js';

console.log(PI); // 3.14

console.log(add(1, 2)); // 3

Use object spread operator

Use object spread operator to merge objects:

const a = { name: 'John Doe', age: 30 };

const b = { job: 'Software Engineer' };

const c = { ...a, ...b };

console.log(c); // { name: 'John Doe', age: 30, job:

'Software Engineer' }

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Use try/catch

Make use of try/catch blocks to handle errors: Try/catch blocks

provide a convenient way to handle errors in JavaScript. A try

block is used to enclose the code that might throw an error, and a

catch block is used to catch the error and handle it. For example:

const divide = (a, b) => {

try {

if (b === 0) {

throw new Error('Cannot divide by zero');

}

return a / b;

} catch (error) {

console.error(error.message);

}

};

console.log(divide(10, 5)); // 2

console.log(divide(10, 0)); // Cannot divide by zero

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Use ternary operator

Use ternary operator for simple conditional statements: The

ternary operator (?) provides a shorthand way to write simple

if/else statements. The operator takes three operands: the

condition to be tested, the expression to be returned if the

condition is true, and the expression to be returned if the

condition is false.

const isPositive = (number) => (number >= 0 ?

'positive' : 'negative');

console.log(isPositive(10)); // positive

console.log(isPositive(-10)); // negative

Use named export/import

Use named export/import to manage modular code: Named

exports and imports allow you to organize and reuse code by

breaking it up into separate modules. You can use named exports

to export multiple values from a module, and named imports to

import specific values into another module.

// utils.js

export const add = (a, b) => a + b;

export const subtract = (a, b) => a - b;

Laurence Svekis https://basescripts.com/

https://basescripts.com/

// index.js

import { add, subtract } from './utils';

console.log(add(10, 5)); // 15

console.log(subtract(10, 5)); // 5

Closure

What is closure in JavaScript and give an example of its usage?

A closure is a function that has access to variables in its outer

scope, even after the outer function has returned.

Example:

// outer function

function outerFunction(x) {

// inner function

return function innerFunction(y) {

return x + y;

}

}

const add5 = outerFunction(5);

Laurence Svekis https://basescripts.com/

https://basescripts.com/

console.log(add5(3)); // 8

Explanation: In the above example, the innerFunction has access

to the x variable of the outerFunction, even after the

outerFunction has returned. By assigning the return value of

outerFunction(5) to the add5 constant, we are able to create a

closure that adds 5 to its input.

forEach Array

How would you implement the forEach function for an array?

Array.prototype.myForEach = function(callback) {

for (let i = 0; i < this.length; i++) {

callback(this[i], i, this);

}

};

const arr = [1, 2, 3];

arr.myForEach(function(element, index, array) {

console.log(element, index, array);

});

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Explanation: The myForEach function is a custom implementation

of the built-in forEach method for arrays. It takes a callback

function as a parameter, which it invokes for each element in the

array. The callback function takes three parameters: the current

element, the index of the current element, and the entire array.

JavaScript Map function

How would you implement the map function for an array?

Array.prototype.myMap = function(callback) {

const result = [];

for (let i = 0; i < this.length; i++) {

result.push(callback(this[i], i, this));

}

return result;

};

const arr = [1, 2, 3];

const doubled = arr.myMap(function(element, index,

array) {

return element * 2;

});

console.log(doubled); // [2, 4, 6]

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Explanation: The myMap function is a custom implementation of

the built-in map method for arrays. It takes a callback function as

a parameter, which it invokes for each element in the array. The

callback function takes three parameters: the current element,

the index of the current element, and the entire array. The

myMap function returns a new array containing the results of the

callback function applied to each element in the original array.

JavaScript Filter

How would you implement the filter function for an array?

Array.prototype.myFilter = function(callback) {

const result = [];

for (let i = 0; i < this.length; i++) {

if (callback(this[i], i, this)) {

result.push(this[i]);

}

}

return result;

};

const arr = [1, 2, 3, 4, 5];

Laurence Svekis https://basescripts.com/

https://basescripts.com/

const evens = arr.myFilter(function(element, index,

array) {

return element % 2 === 0;

});

console.log(evens); // [2, 4]

Explanation: The `myFilter` function is a custom implementation

of the built-in `filter` method for arrays. It takes a `callback`

function as a parameter, which it invokes for each element in the

array. The `callback` function takes three parameters: the

current element, the index of the current element, and the entire

array. If the `callback` function returns `true` for a given

element, that element is included in the resulting array.

Check if number is an integer

How would you check if a number is an integer?

function isInteger(num) {

return typeof num === 'number' &&

Number.isInteger(num);

}

Laurence Svekis https://basescripts.com/

https://basescripts.com/

console.log(isInteger(5)); // true

console.log(isInteger(5.1)); // false

Explanation: The `isInteger` function takes a number as an

argument and returns a boolean indicating whether or not it is an

integer. It does so by checking the type of the input and using the

built-in `Number.isInteger` method to determine if it is an

integer.

Is the string a palindrome

How would you check if a given string is a palindrome?

function isPalindrome(str) {

return str === str.split('').reverse().join('');

}

console.log(isPalindrome('racecar')); // true

console.log(isPalindrome('hello')); // false

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Explanation: The `isPalindrome` function takes a string as an

argument and returns a boolean indicating whether or not it is a

palindrome. It does so by splitting the string into an array of

characters, reversing the array, and then joining the characters

back into a string. If the resulting string is equal to the original

input string, then it is a palindrome.

Reverse a String

How would you reverse a string in place (without creating a new

string)?

function reverseStringInPlace(str) {

let left = 0;

let right = str.length - 1;

str = str.split('');

while (left < right) {

const temp = str[left];

str[left] = str[right];

str[right] = temp;

sql

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Copy code

left++;

right--;

}

return str.join('');

}

console.log(reverseStringInPlace('hello')); // 'olleh'

Explanation: The `reverseStringInPlace` function takes a string

as an argument and reverses it in place (without creating a new

string). It does so by using two pointers (`left` and `right`) to

keep track of the first and last characters of the string. It then

swaps the characters at these positions and moves the pointers

towards the center of the string until they meet in the middle.

Finally, it returns the reversed string by joining the characters in

the array back into a string.

Find the largest number in an array

How would you find the largest number in an array?

function findLargest(arr) {

Laurence Svekis https://basescripts.com/

https://basescripts.com/

let largest = -Infinity;

for (let i = 0; i < arr.length; i++) {

if (arr[i] > largest) {

largest = arr[i];

}

}

return largest;

}

console.log(findLargest([3, 5, 2, 8, 1])); // 8

Explanation: The `findLargest` function takes an array of

numbers as an argument and returns the largest number in the

array. It does so by initializing a variable `largest` to a very small

number, and then iterating over the array using a for loop. For

each iteration, it checks if the current element is greater than

`largest`, and if so, updates `largest` with the current element.

Finally, it returns the `largest` number.

Check Object Property

How would you check if an object has a property?

Laurence Svekis https://basescripts.com/

https://basescripts.com/

function hasProperty(obj, prop) {

return obj.hasOwnProperty(prop);

}

const obj = { name: 'John', age: 30 };

console.log(hasProperty(obj, 'name')); // true

console.log(hasProperty(obj, 'email')); // false

Explanation: The hasProperty function takes an object and a

property name as arguments and returns a boolean indicating

whether the object has the property. It does so by using the

built-in hasOwnProperty method on the object, which returns true

if the object has the specified property, and false otherwise.

Common Elements in two Arrays

How would you find the common elements between two arrays?

function findCommonElements(arr1, arr2) {

return arr1.filter(el => arr2.includes(el));

}

Laurence Svekis https://basescripts.com/

https://basescripts.com/

console.log(findCommonElements([1, 2, 3], [2, 3, 4]));

// [2, 3]

Explanation: The findCommonElements function takes two arrays

as arguments and returns an array of the common elements

between them. It does so by using the built-in filter method on

the first array, passing a callback function that uses the built-in

includes method to check if the current element exists in the

second array. If it does, the element is included in the resulting

array.

Function takes an array and returns a new

array with only even numbers

Write a function that takes an array of numbers and returns a

new array with only the even numbers.

function getEvenNumbers(numbers) {

let evenNumbers = [];

numbers.forEach(function(number) {

Laurence Svekis https://basescripts.com/

https://basescripts.com/

if (number % 2 === 0) {

evenNumbers.push(number);

}

});

return evenNumbers;

}

const numbers = [1, 2, 3, 4, 5];

console.log(getEvenNumbers(numbers)); // [2, 4]

In this example, the getEvenNumbers function takes an array of

numbers as an argument and uses the forEach method to iterate

over the array. For each number, the function checks if it is even

by using the modulo operator % to check if the remainder of the

division by 2 is 0. If the number is even, it is pushed onto the

evenNumbers array. The function returns the array of even

numbers.

Function that takes array of objects and

returns specific property values

Write a function that takes an array of objects and returns an

array of values of a specific property of each object.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

function getPropertyValues(objects, property) {

let values = [];

objects.forEach(function(object) {

values.push(object[property]);

});

return values;

}

const objects = [

{name: 'John', age: 32},

{name: 'Jane', age: 28},

{name: 'Jim', age: 35}

];

console.log(getPropertyValues(objects, 'name')); //

['John', 'Jane', 'Jim']

In this example, the getPropertyValues function takes an array of

objects and a property name as arguments and uses the forEach

method to iterate over the array of objects

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Function that returns largest number from the

array

Write a function that takes an array of numbers and returns the

largest number.

function findLargestNumber(numbers) {

let largest = numbers[0];

for (let i = 1; i < numbers.length; i++) {

if (numbers[i] > largest) {

largest = numbers[i];

}

}

return largest;

}

const numbers = [1, 5, 10, 3, 20];

console.log(findLargestNumber(numbers)); // 20

In this example, the findLargestNumber function takes an array of

numbers as an argument and uses a for loop to iterate over the

array. The function initializes the largest variable to the first

element of the array, and then iterates over the remaining

elements, checking if each element is larger than the current

largest value. If an element is larger, the largest variable is

Laurence Svekis https://basescripts.com/

https://basescripts.com/

updated to that value. The function returns the largest number in

the array.

Function returning array of objects and

unique values

Write a function that takes an array of objects and returns an

object with properties that correspond to the unique values of a

specific property of each object.

function createObjectFromArray(objects, property) {

let uniqueValues = {};

objects.forEach(function(object) {

uniqueValues[object[property]] = true;

});

return uniqueValues;

}

const objects = [

{name: 'John', city: 'New York'},

{name: 'Jane', city: 'London'},

{name: 'Jim', city: 'New York'}

];

console.log(createObjectFromArray(objects, 'city'));

Laurence Svekis https://basescripts.com/

https://basescripts.com/

// {

// New York: true,

// London: true

// }

In this example, the createObjectFromArray function takes an

array of objects and a property name as arguments and uses the

forEach method to iterate over the array of objects. For each

object, the value of the specified property is used as a key in the

uniqueValues object, and the value is set to true. The function

returns the uniqueValues object, which has properties that

correspond to the unique values of the specified property in the

array of objects.

Function that returns squares of array

numbers

Write a function that takes an array of numbers and returns an

array of the squares of each number.

function squareNumbers(numbers) {

let squares = [];

numbers.forEach(function(number) {

squares.push(number * number);

Laurence Svekis https://basescripts.com/

https://basescripts.com/

});

return squares;

}

const numbers = [1, 2, 3, 4, 5];

console.log(squareNumbers(numbers)); // [1, 4, 9, 16,

25]

In this example, the squareNumbers function takes an array of

numbers as an argument and uses the forEach method to iterate

over the array. For each number, the square is determined by

multiplying the number by itself and the result is pushed onto the

squares array. The function returns the array of squares.

Function that returns new string with specific

occurrences removed

Write a function that takes a string and returns a new string with

all occurrences of a specified character removed.

function removeCharacter(string, character) {

let newString = '';

for (let i = 0; i < string.length; i++) {

Laurence Svekis https://basescripts.com/

https://basescripts.com/

if (string[i] !== character) {

newString += string[i];

}

}

return newString;

}

const originalString = 'Hello World';

console.log(removeCharacter(originalString, 'o')); //

'Hell Wrd'

In this example, the removeCharacter function takes a string and

a character as arguments. The function uses a for loop to iterate

over the characters in the string. If the current character is not

equal to the specified character, it is concatenated onto the

newString. The function returns the newString without the

specified character.

Function returns new array of strings with 5

characters

Write a function that takes an array of strings and returns a new

array with all strings that have a length of exactly 5 characters.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

function findStringsOfLength5(strings) {

let stringsOfLength5 = [];

strings.forEach(function(string) {

if (string.length === 5) {

stringsOfLength5.push(string);

}

});

return stringsOfLength5;

}

const strings = ['Hello', 'World', 'Five', 'Length',

'Words'];

console.log(findStringsOfLength5(strings)); //

['Hello', 'Words']

In this example, the findStringsOfLength5 function takes an array

of strings as an argument and uses the forEach method to iterate

over the array. For each string, the length is checked to see if it is

equal to 5. If the length is 5, the string is pushed onto the

stringsOfLength5 array. The function returns the stringsOfLength5

array, which contains all strings that have a length of exactly 5

characters.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Tips for writing better JavaScript code, along with code samples

and explanations:

Use let and const instead of var

Use let and const instead of var: Use let and const instead of var

to declare variables in JavaScript. This helps to avoid variable

hoisting and scope issues.

Example:

// using let

let name = 'John Doe';

console.log(name);

// using const

const PI = 3.14;

console.log(PI);

Use template literals

Use template literals instead of concatenation: Use template

literals (` `) instead of concatenation to create strings that

contain variables.

Example:

Laurence Svekis https://basescripts.com/

https://basescripts.com/

// using template literals

let name = 'John Doe';

console.log(`Hello, ${name}!`);

// using concatenation

let name = 'John Doe';

console.log('Hello, ' + name + '!');

Use arrow functions

Use arrow functions for concise syntax: Use arrow functions (=>)

to create anonymous functions with a concise syntax.

Example:

// using arrow functions

const square = num => num * num;

console.log(square(5));

// using traditional function syntax

function square(num) {

return num * num;

}

console.log(square(5));

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Use destructuring

Use destructuring to extract values from objects and arrays: Use

destructuring to extract values from objects and arrays and

assign them to variables.

Example:

// using destructuring with an object

const person = { name: 'John Doe', age: 30 };

const { name, age } = person;

console.log(name, age);

// using destructuring with an array

const numbers = [1, 2, 3, 4, 5];

const [first, second, ...others] = numbers;

console.log(first, second, others);

Use spread operator

Use spread operator to spread arrays: Use the spread operator

(...) to spread arrays into separate values or to concatenate

arrays.

Example:

Laurence Svekis https://basescripts.com/

https://basescripts.com/

// using spread operator to spread array into separate

values

const numbers = [1, 2, 3];

const max = Math.max(...numbers);

console.log(max);

// using spread operator to concatenate arrays

const numbers1 = [1, 2, 3];

const numbers2 = [4, 5, 6];

const allNumbers = [...numbers1, ...numbers2];

console.log(allNumbers);

Use map, filter, and reduce

Use map, filter, and reduce to transform arrays: Use map, filter,

and reduce to transform arrays and extract information from

them.

Example:

// using map to transform an array

const numbers = [1, 2, 3, 4, 5];

const doubledNumbers = numbers.map(num => num * 2);

console.log(doubledNumbers);

Laurence Svekis https://basescripts.com/

https://basescripts.com/

// using filter to extract information from an array

const numbers = [1, 2, 3, 4, 5];

const evenNumbers = numbers.filter(num => num % 2 ===

0);

console.log(evenNumbers);

// using reduce to extract information from an array

const numbers = [1, 2, 3, 4, 5];

const sum = numbers.reduce((acc, num) => acc + num, 0

console.log(sum);

In this example, the reduce method takes two arguments: a

callback function and an initial value. The callback function takes

two arguments: an accumulator (acc) and the current value

(num). The reduce method iterates through the array, updating

the accumulator with each iteration, and returns the final

accumulator value. In this case, the final accumulator value is the

sum of all the numbers in the array.

JavaScript Closure Explained

A closure in JavaScript is a function that has access to variables in

its parent scope, even after the parent function has returned.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Closures are created when a function is defined inside another

function, and the inner function retains access to the variables in

the outer function's scope.

Here is an example of a closure in JavaScript:

code example

function outerFunction(x) {

var innerVar = 4;

function innerFunction() {

return x + innerVar;

}

return innerFunction;

}

var closure = outerFunction(2);

console.log(closure()); // Output: 6

In this example, the innerFunction is a closure because it has

access to the variable x and innerVar from the outerFunction even

after outerFunction has returned.

A closure has three scope chains:

1. It has access to its own scope (variables defined between its

curly braces {}).

Laurence Svekis https://basescripts.com/

https://basescripts.com/

2. It has access to the outer function's variables.

3. It has access to the global variables.

Closures are commonly used in JavaScript for a variety of tasks,

such as:

● Implementing private methods and variables.

● Creating callback functions that retain access to variables

from their parent scope.

● Creating and returning an object that has access to variables

from its parent scope.

JavaScript closures are an important concept and it is important

to understand how closures work in JavaScript. It is also

important to be aware of the scope chain, and how closures

interact with the scope chain.

<!DOCTYPE html>

<html>

<head>

<title>Learn JavaScript</title>

</head>

<body>

<h1>Complete JavaScript Course </h1>

<div class="output"></div>

<script src="app6.js"></script>

Laurence Svekis https://basescripts.com/

https://basescripts.com/

</body>

</html>

const val1 = 10;

function outerFun(x){

const val2 = 10;

function innerFun(){

return x + val2 + val1;

}

return innerFun;

}

const val3 = outerFun(15);

console.log(val3());

for(let x=0;x<10;x++){

console.log(outerFun(x+2)());

}

JavaScript Object Notation (JSON)

JavaScript Object Notation (JSON) is a lightweight

data-interchange format that is easy for humans to read and

write and easy for machines to parse and generate. It is based on

Laurence Svekis https://basescripts.com/

https://basescripts.com/

a subset of the JavaScript Programming Language, Standard

ECMA-262 3rd Edition - December 1999. JSON is a text format

that is completely language independent but uses conventions

that are familiar to programmers of the C-family of languages,

including C, C++, C#, Java, JavaScript, Perl, Python, and many

others. These properties make JSON an ideal data-interchange

language.

https://youtu.be/wdoIV_09xAc

Here is an example of JSON data:

{

"name": "Laurence Svekis",

"age": 41,

"address": {

"street": "10 Main St",

"city": "New York",

"state": "NY",

"zip": 10001

},

"phoneNumbers": [

{

"type": "home",

"number": "212 123-1234"

Laurence Svekis https://basescripts.com/

https://youtu.be/wdoIV_09xAc
https://basescripts.com/

},

{

"type": "work",

"number": "646 123-4567"

}

]

}

JavaScript provides methods JSON.stringify() and JSON.parse()

to convert between JSON and JavaScript objects.

Example of converting JavaScript object to JSON:

Code Example :

const object = { name: 'John Doe', age: 35 };

const json = JSON.stringify(object);

console.log(json);

Example of converting JSON to JavaScript object:

Code Example :

const json = '{"name":"John Doe","age":35}';

const object = JSON.parse(json);

console.log(object.name); // "John Doe"

Laurence Svekis https://basescripts.com/

https://basescripts.com/

In summary, JSON is a lightweight data interchange format that

is easy for humans to read and write, and easy for machines to

parse and generate. It is based on a subset of JavaScript and can

be used with many programming languages. JavaScript provides

built-in methods for converting between JSON and JavaScript

objects.

There are several ways to get JSON data with JavaScript. One

common method is to use the fetch() function to make an HTTP

request to a server that returns JSON data. The fetch() function

returns a promise that resolves to a response object, from which

the JSON data can be extracted using the json() method.

Here is an example of how to get JSON data from a remote

server:

fetch('https://api.example.com/data')

.then(response => response.json())

.then(data => {

console.log(data);

})

.catch(error => {

console.error('Error:', error);

});

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Another way to get JSON data is to load it from a local file using

the XMLHttpRequest object or the fetch() function.

Here is an example of how to get JSON data from a local file:

var xhr = new XMLHttpRequest();

xhr.open('GET', 'data.json', true);

xhr.responseType = 'json';

xhr.onload = function() {

if (xhr.status === 200) {

console.log(xhr.response);

}

};

xhr.send();

In summary, there are several ways to get JSON data with

JavaScript, including using the fetch() function to make an HTTP

request to a server that returns JSON data or by loading JSON

data from a local file using the XMLHttpRequest object or the

fetch() function. Once you have the data you can use json() to

access the data.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

<!DOCTYPE html>

<html>

<head>

<title>Learn JavaScript</title>

</head>

<body>

<h1>Complete JavaScript Course </h1>

<div class="output">Data</div>

<script src="app7.js"></script>

</body>

</html>

const url = 'my1.json';

const output = document.querySelector('.output');

Laurence Svekis https://basescripts.com/

https://basescripts.com/

const dataSt = '{"name":"Laurence

Svekis","age":41,"address":{"street":"10 Main

St","city":"New

York","state":"NY","zip":10001},"phoneNumbers":[{"type"

:"home","number":"212

123-1234"},{"type":"work","number":"646

123-4567"},{"type":"work 2","number":"343

133-4567"}]}';

console.log(dataSt);

const dataObj = JSON.parse(dataSt);

console.log(dataObj);

output.addEventListener('click',getJsonData);

function getJsonData(){

output.textContent = 'loading.....';

fetch(url)

.then(response => response.json())

.then(data => {

myOutput(data);

})

.catch(error => {

console.error('Error:',error);

})

Laurence Svekis https://basescripts.com/

https://basescripts.com/

}

function myOutput(data){

let html = `<h1>${data.name}</h1>

<div>${data.address.street}</div>

<div>${data.address.city}</div>

<div>${data.address.state}</div>

<div>${data.address.zip}</div>

`;

data.phoneNumbers.forEach(el =>{

html += `<small>${el.type} -

(${el.number})</small>
`;

})

html += JSON.stringify(data);

output.innerHTML = html;

}

{

"name": "Laurence Svekis",

"age": 41,

"address": {

"street": "10 Main St",

"city": "New York",

Laurence Svekis https://basescripts.com/

https://basescripts.com/

"state": "NY",

"zip": 10001

},

"phoneNumbers": [

{

"type": "home",

"number": "212 123-1234"

},

{

"type": "work",

"number": "646 123-4567"

},

{

"type": "work 2",

"number": "343 133-4567"

}

]

}

JavaScript Create Element List

https://youtu.be/oBuBoCrLRWg

Laurence Svekis https://basescripts.com/

https://youtu.be/oBuBoCrLRWg
https://basescripts.com/

The document.createElement() method in JavaScript is used to

create a new HTML element with a specified tag name. The

method takes a single argument, which is the tag name of the

element to be created. For example,

document.createElement("div") creates a new div element. The

newly created element can be accessed and modified through the

DOM API, such as adding content, attributes, and styles to the

element. It can also be added to the document by using methods

such as appendChild() or insertAdjacentHTML().

In the below example we will be creating a dynamic list, all the

elements are created using JavaScript, adding the button for

interaction when the user wants to add new people to the list.

const myArr = ['Laurence','Susan','Lisa'];

const output = document.querySelector('.output');

Laurence Svekis https://basescripts.com/

https://basescripts.com/

const btn = document.createElement('button');

btn.textContent = 'Add Person';

output.append(btn);

const myInput = document.createElement('input');

myInput.setAttribute('type','text');

myInput.value = 'Lawrence';

output.prepend(myInput);

const ul = document.createElement('ul');

output.append(ul);

build();

btn.addEventListener('click',addPerson);

function addPerson(){

const newPerson = myInput.value;

myArr.push(newPerson);

adder(newPerson);

console.log(myArr);

}

function adder(person){

Laurence Svekis https://basescripts.com/

https://basescripts.com/

const li = document.createElement('li');

li.textContent = person;

ul.append(li);

}

function build(){

myArr.forEach(ele => {

adder(ele);

})

}

Create an interactive table list of item object

values from a JavaScript array.

https://youtu.be/4Pvz_ILMEdE

Laurence Svekis https://basescripts.com/

https://youtu.be/4Pvz_ILMEdE
https://basescripts.com/

Create a list of items within a table using JavaScript. Data is

contained within an array with object values.

<!DOCTYPE html>

<html>

<head>

<title>Learn JavaScript</title>

<style>

table{

width:100%;

}

td:first-child{

width:10%;

}

td:last-child{

width:10%;

}

td{

border: 1px solid #ddd;

}

</style>

</head>

<body>

<h1>Learn JavaScript Course </h1>

Laurence Svekis https://basescripts.com/

https://basescripts.com/

<div>

<input type="text" id="addFriend" >

<input type="button" id="addNew" value="Add

New">

<div class="output"></div>

</div>

<script src="app10.js"></script>

</body>

</html>

const myArr = [

{name:'Laurence',score:0,id:1} ,

{name:'Susan',score:0,id:2} ,

{name:'Lisa',score:0,id:3}

];

const output = document.querySelector('.output');

const btn = document.querySelector('#addNew');

const addFriend = document.querySelector('#addFriend');

const tblOutput = document.createElement('table');

output.append(tblOutput);

addFriend.value = 'Laurence';

build();

btn.addEventListener('click',()=>{

Laurence Svekis https://basescripts.com/

https://basescripts.com/

const myObj =

{name:addFriend.value,score:0,id:myArr.length+1} ;

myArr.push(myObj);

console.log(myArr);

build();

})

function build(){

tblOutput.innerHTML = '';

myArr.forEach((ele,ind) =>{

const tr = document.createElement('tr');

tblOutput.append(tr);

const td1 = document.createElement('td');

td1.textContent = ele.id;

tr.append(td1);

const td2 = document.createElement('td');

td2.textContent = ele.name;

tr.append(td2);

const td3 = document.createElement('td');

td3.textContent = ele.score;

tr.append(td3);

tr.addEventListener('click',()=>{

ele.score++;

td3.textContent = ele.score;

Laurence Svekis https://basescripts.com/

https://basescripts.com/

})

})

}

How to Create Page Elements with JavaScript

Create Page Elements with JavaScript

https://youtu.be/x8STY2Bat-Y

How to Create Page Elements and make them Interactive with

Event LIsteners

There are several ways to create page elements with JavaScript,

including:

Using the document.createElement() method, which creates a

new element with the specified tag name. For example, the

following code creates a new div element:

let newDiv = document.createElement("div");

Laurence Svekis https://basescripts.com/

https://youtu.be/x8STY2Bat-Y
https://basescripts.com/

Using the innerHTML property to add HTML content to an existing

element. For example, the following code adds a new p element

to an existing div element with an id of "container":

let container = document.getElementById("container");

container.innerHTML += "<p>Hello World</p>";

Using the appendChild() method to add a new element as a child

of an existing element. For example, the following code adds a

new p element as a child of an existing div element with an id of

"container":

let container = document.getElementById("container");

let newP = document.createElement("p");

newP.innerHTML = "Hello World";

container.appendChild(newP);

Using the insertAdjacentHTML() method to insert HTML content at

a specific position relative to an existing element. For example,

the following code adds a new p element before an existing div

element with an id of "container":

let container = document.getElementById("container");

container.insertAdjacentHTML("beforebegin", "<p>Hello

World</p>");

Laurence Svekis https://basescripts.com/

https://basescripts.com/

You can also use any of the above methods to add CSS styles,

classes and attributes to the newly created elements.

Coding Example of how to insert page content

, html elements into your DOM page.

Coding Exercise to demo how to insert HTML page elements into the

page with JavaScript

Laurence Svekis https://basescripts.com/

https://basescripts.com/

const ele1 = document.createElement('div');

ele1.textContent = 'My new element';

document.body.prepend(ele1);

const output = document.querySelector('.output');

output.innerHTML += '<div>Laurence</div>';

output.innerHTML += '<div>Hello World</div>';

output.style.border = '1px solid red';

const ele2 = document.createElement('h2');

Laurence Svekis https://basescripts.com/

https://basescripts.com/

ele2.innerHTML = 'Laurence Svekis';

const el = output.appendChild(ele2);

console.log(el);

const ele3 = document.createElement('h2');

ele3.innerHTML = 'Laurence Svekis';

const el2 = output.append(ele3);

console.log(el2);

output.insertAdjacentHTML('beforebegin','<p>Para1</p>')

;

output.insertAdjacentHTML('beforeend','<p>Para2</p>');

output.insertAdjacentHTML('afterbegin','<p>Para3</p>');

output.insertAdjacentHTML('afterend','<p>Para4</p>');

const ele4 = document.createElement('h3');

ele4.textContent = 'Laurence Svekis';

output.insertAdjacentElement('beforebegin',ele4);

output.insertAdjacentText('beforeend','Hello World 4');

JavaScript Async Code Examples

Laurence Svekis https://basescripts.com/

https://basescripts.com/

JavaScript is a single-threaded language, which means that it can

only execute one piece of code at a time. This can make it

challenging to perform long-running tasks, such as network

requests, without freezing up the UI.

To solve this issue, JavaScript provides the concept of

asynchronous programming, which allows you to run tasks in the

background while the main thread continues to execute.

There are several ways to perform asynchronous operations in

JavaScript:

Callbacks: A callback is a function that gets executed after

another function has finished executing.

Example:

function fetchData(callback) {

setTimeout(() => {

callback({ data: "Example data" });

}, 1000);

}

fetchData(data => console.log(data));

// Output (after 1 second): { data: "Example data" }

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Promises: A Promise represents the eventual result of an

asynchronous operation. A Promise can be in one of three states:

pending, fulfilled, or rejected.

Example:

const fetchData = new Promise((resolve, reject) => {

setTimeout(() => {

resolve({ data: "Example data" });

}, 1000);

});

fetchData.then(data => console.log(data));

// Output (after 1 second): { data: "Example data" }

async/await: async/await is a more concise and readable way to

write asynchronous code, built on top of Promises. The async

keyword is used to declare an asynchronous function, and the

await keyword is used to wait for a Promise to be resolved.

Example:

async function fetchData() {

return new Promise((resolve, reject) => {

setTimeout(() => {

resolve({ data: "Example data" });

}, 1000);

});

}

Laurence Svekis https://basescripts.com/

https://basescripts.com/

async function main() {

const data = await fetchData();

console.log(data);

}

main();

// Output (after 1 second): { data: "Example data" }

By using these asynchronous programming techniques, you can

run long-running tasks in the background, without blocking the

main thread and freezing the UI.

JavaScript Closure

A closure in JavaScript is a function that has access to the

variables in its parent scope, even after the parent function has

completed execution. This allows for data to be "closed over" or

remembered by the inner function, even after the outer function

has returned.

https://youtu.be/AyQRYwV69cc

For example:

function makeCounter() {

Laurence Svekis https://basescripts.com/

https://youtu.be/AyQRYwV69cc
https://basescripts.com/

let count = 0;

return function() {

return count++;

}

}

let counter = makeCounter();

console.log(counter()); // outputs 0

console.log(counter()); // outputs 1

console.log(counter()); // outputs 2

Here, the makeCounter function returns an inner function that

has access to the count variable declared in its parent scope, and

can "remember" the current count value even after the

makeCounter function has completed execution. Each time the

inner function is called, it returns the current value of count and

increments it by 1.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

const a = 'hello';

console.log(a);

abc();

function abc(){

//const a = 'world';

console.log(a);

}

function myCount(){

let count = 0;

return function(){

Laurence Svekis https://basescripts.com/

https://basescripts.com/

return count++;

}

}

function myCount2(){

let count = 0 ;

return count++;

}

let cnt = myCount();

let cnt2 = myCount2;

for(let x=0;x<10;x++){

console.log(cnt());

console.log(cnt2());

}

JavaScript Closure Advanced

In this example, the makeAdder function takes in a single

argument x and returns an inner function that takes in a second

argument y. The inner function has access to the x variable

declared in the parent scope and uses it to add x and y together

and return the result.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

We can see here that the outer function makeAdder has been

executed twice and it returns two different inner functions which

are assigned to different variables add5 and add10 and these

inner functions are able to remember their respective parent

scope values of x.

https://youtu.be/8EgbirmLt0g

function makeAdder(x) {

return function(y) {

return x + y;

}

}

let add5 = makeAdder(5);

console.log(add5(3)); // outputs 8

console.log(add5(4)); // outputs 9

let add10 = makeAdder(10);

console.log(add10(5)); // outputs 15

console.log(add10(6)); // outputs 16

Laurence Svekis https://basescripts.com/

https://youtu.be/8EgbirmLt0g
https://basescripts.com/

const output = document.querySelector('#output');

function adder(val){

return function(val2){

return val + val2;

}

}

let a1 = adder(15);

console.log(a1(2));

for(let x=0;x<10;x++){

output.innerHTML += `<div>Output ${(a1(2+x))}</div>`;

}

Laurence Svekis https://basescripts.com/

https://basescripts.com/

JavaScript Image Gallery and Dynamic Image

Gallery using page classes or create page

elements on the fly with code

https://youtu.be/nsGGMAYnLbs

Here is an example of a JavaScript image gallery maker that

creates a simple image gallery with prev/next buttons to navigate

through the images:

<div id="gallery">

<button id="prev-button">Prev</button>

<button id="next-button">Next</button>

</div>

<script>

var images = ["image1.jpg", "image2.jpg",

"image3.jpg", "image4.jpg"];

var currentIndex = 0;

Laurence Svekis https://basescripts.com/

https://youtu.be/nsGGMAYnLbs
https://basescripts.com/

var gallery = document.getElementById("gallery");

var currentImage =

document.getElementById("current-image");

var prevButton =

document.getElementById("prev-button");

var nextButton =

document.getElementById("next-button");

prevButton.addEventListener("click", function() {

currentIndex--;

if (currentIndex < 0) {

currentIndex = images.length - 1;

}

currentImage.src = images[currentIndex];

});

nextButton.addEventListener("click", function() {

currentIndex++;

if (currentIndex >= images.length) {

currentIndex = 0;

}

currentImage.src = images[currentIndex];

});

</script>

Laurence Svekis https://basescripts.com/

https://basescripts.com/

This example uses JavaScript to select the elements from the

HTML, and add event listeners to the prev/next buttons to

navigate through the images in the images array when clicked.

The currentIndex variable keeps track of the current image being

displayed, and the currentImage.src property is updated to show

the next/prev image in the array when the buttons are clicked.

The above code is an example of a JavaScript image gallery

maker that creates a simple image gallery with prev/next

buttons. The code uses JavaScript to select the necessary

elements from the HTML, such as the gallery container, current

image, and prev/next buttons. It then adds event listeners to the

prev/next buttons, so that when they are clicked, the current

image being displayed is updated to the next/prev image in the

images array. The currentIndex variable keeps track of the

current image being displayed, and it is updated each time the

prev/next buttons are clicked. When the current index reaches

the end of the images array, it resets to the first image, thus

creating an infinite loop.

Dynamic Image Gallery

How to Create an Image Gallery and Dynamic Image

Gallery with JavaScript Code

Laurence Svekis https://basescripts.com/

https://basescripts.com/

The image gallery can also be used within a function to create

multiple image galleries all working independently. Either

creating them on the fly within the code or selecting existing

elements with the class name and generating images within those

elements.

const output = document.querySelector('.output');

const images =

['one.jpg','two.jpg','three.jpg','four.jpg'];

/*

Laurence Svekis https://basescripts.com/

https://basescripts.com/

for(let x=0;x<12;x++){

const el = document.createElement('div');

output.append(el);

cGallery(el);

}

*/

const eles = document.querySelectorAll('.gal');

eles.forEach(el => {

cGallery(el);

})

function cGallery(parentEle){

let curIndex = 0;

const gallery = document.createElement('div');

const curImage = document.createElement('img');

curImage.setAttribute('src','one.jpg');

const btn1 = document.createElement('button');

btn1.textContent = 'Prev';

const btn2 = document.createElement('button');

btn2.textContent = 'Next';

parentEle.append(gallery);

gallery.append(curImage);

gallery.append(btn1);

gallery.append(btn2);

Laurence Svekis https://basescripts.com/

https://basescripts.com/

btn1.addEventListener('click',()=>{

curIndex--;

if(curIndex<0){

curIndex = images.length-1;

}

console.log(images[curIndex]);

curImage.src = images[curIndex];

})

btn2.addEventListener('click',()=>{

curIndex++;

if(curIndex >= images.length){

curIndex = 0;

}

console.log(images[curIndex]);

curImage.src = images[curIndex];

})

}

HTTP request in Javascript Get JSON data

with xhr method and fetch methods

HTTP request in Javascript?

Laurence Svekis https://basescripts.com/

https://basescripts.com/

There are several ways to make an HTTP request in JavaScript,

including using the XMLHttpRequest object or the fetch() function.

Here is an example of making an HTTP GET request using

XMLHttpRequest:

var xhr = new XMLHttpRequest();

xhr.open("GET", "https://example.com");

xhr.send();

Here's an example of making an HTTP GET request to a JSON

endpoint using the XMLHttpRequest object and parsing the

response as JSON:

var xhr = new XMLHttpRequest();

xhr.open("GET", "https://example.com/data.json");

xhr.onload = function() {

if (xhr.status === 200) {

var data = JSON.parse(xhr.responseText);

console.log(data);

} else {

console.error(xhr.statusText);

}

};

xhr.onerror = function() {

console.error(xhr.statusText);

Laurence Svekis https://basescripts.com/

https://basescripts.com/

};

xhr.send();

In this example, a new XMLHttpRequest object is created, and

then opened with the "GET" method and the specified JSON

endpoint URL. The onload event is used to handle the response,

and onerror event is used to handle any error. The xhr.status is

checked and if it's 200, it indicates that the request is successful,

then we parse the response as JSON and

log the data to the console. If the xhr.status is not 200, it means

there's an error and it logs the error message in the onerror

function. If there's any network error, the onerror function is

triggered, and it logs the error message.

Finally the request is sent using the xhr.send() method.

Please note that you should always check the response status

code and handle it accordingly. Also, XMLHttpRequest is an old

API, and fetch() is more modern and recommended

The fetch() method is a modern JavaScript method that allows

you to make HTTP requests, similar to the XMLHttpRequest

object. The fetch() method returns a promise that resolves to the

response of the request, which can be a Response or Error object.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

When you call the fetch() method, you pass in the URL of the

endpoint you want to make the request to. You can also pass in

an options object as the second parameter, which allows you to

configure the request, such as setting the HTTP method, headers,

and body.

The fetch() method returns a promise that resolves to the

response of the request. Once you have the response, you can

use the .json(), .text(), .blob() methods, etc to access the data of

the response.

Here's an example of how you can use the fetch() method:

fetch("https://example.com/data.json")

.then(response => response.json())

.then(data => console.log(data))

.catch(error => console.log(error));

In this example, the fetch() method is used to make a GET

request to a JSON endpoint. The .then() method is used to handle

the response, which is passed as a parameter to the first callback

function. The response.json() method is used to parse the

response as JSON and the result is passed to the second callback

function. Finally, the data is logged to the console. If there's any

Laurence Svekis https://basescripts.com/

https://basescripts.com/

error during the request, it will be caught and logged by the catch

function.

The fetch() method is a more modern and recommended way to

make HTTP requests in JavaScript, it's more concise and easy to

use, and it's supported in most modern browsers.

And here is an example of making an HTTP GET request using

fetch():

fetch("https://example.com")

.then(response => response.text())

.then(data => console.log(data))

.catch(error => console.log(error));

The first example uses the XMLHttpRequest object to create a

new request, open it with the "GET" method and the specified

URL, and then send it. The response to the request can then be

handled using the onload or onerror events.

The second example uses the fetch() function to make the same

GET request to the specified URL, and then uses the .then()

method to handle the response, which is passed as a parameter

to the first callback function. The response is transformed to text

and then logged in the second callback function. If there's any

Laurence Svekis https://basescripts.com/

https://basescripts.com/

error during the request, it will be caught and logged by the catch

function.

Here's an example of making an HTTP GET request to a JSON

endpoint using the fetch() function and parsing the response as

JSON:

fetch("https://example.com/data.json")

.then(response => response.json())

.then(data => console.log(data))

.catch(error => console.log(error));

The fetch() function is used to make the GET request to the

specified JSON endpoint. The response.json() method is then

used to parse the response as JSON and the result is passed to

the first callback function. In the second callback function, the

data is logged. If there's any error during the request, it will be

caught and logged by the catch function.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

const output = document.querySelector('.output');

const url =

'https://www.discoveryvip.com/shared/person1000.json';

const xhr = new XMLHttpRequest();

xhr.open('GET',url);

xhr.onload = function(){

if(xhr.status === 200){

const data = JSON.parse(xhr.responseText);

maker(data);

}else{

console.error(xhr.statusText);

}

}

xhr.onerror = function(){

Laurence Svekis https://basescripts.com/

https://basescripts.com/

console.error(xhr.statusText);

}

xhr.send();

output.innerHTML += '<hr>';

fetch(url)

.then(res => res.json())

.then(data => maker(data))

.catch(error => console.log(error));

function maker(data){

data.forEach(ele =>{

output.innerHTML += `

<div>${ele.name.first} ${ele.name.last}

${ele.age}</div>

<small>${JSON.stringify(ele)}</small>`;

})

output.innerHTML += '<hr>';

}

JSON Code

[

Laurence Svekis https://basescripts.com/

https://basescripts.com/

{

"name": {

"first": "Laurence",

"last": "Svekis"

},

"age": 40,

"location": {

"city": "Toronto",

"country": "Canada"

}

},

{

"name": {

"first": "Lisa",

"last": "Suekis"

},

"age": 30,

"location": {

"city": "New York",

"country": "USA"

}

},

{

"name": {

Laurence Svekis https://basescripts.com/

https://basescripts.com/

"first": "Johyn",

"last": "Sekis"

},

"age": 50,

"location": {

"city": "New York",

"country": "USA"

}

}

]

How to add Fade Out and Fade in to page elements

pure JavaScript

Learn how to apply fade in and fade out effects to HTML page

elements with pure JavaScript code. Select and create new page

elements dynamically with code, add event listeners and have the

page elements fade in and fade out once the event is triggered.

Adding Fade Effects to new and existing Page Elements

Laurence Svekis https://basescripts.com/

https://basescripts.com/

const output = document.querySelector('#output');

for(let x=0;x<5;x++){

const el = document.createElement('div');

output.append(el);

const btn = document.createElement('button');

btn.textContent = `Click Me ${x}`;

el.append(btn);

const div = document.createElement('div');

div.style.transition = 'opacity 1500ms';

div.style.opacity = '1';

div.textContent = `Counter ${x+1}`;

el.append(div);

Laurence Svekis https://basescripts.com/

https://basescripts.com/

btn.addEventListener('click',()=>{

if(div.style.opacity === '1'){

div.style.opacity = '0';

}else{

div.style.opacity = '1';

}

})

}

const fademe = document.querySelectorAll('.fader');

fademe.forEach((ele)=>{

ele.style.transition = 'opacity 500ms';

ele.style.opacity = '1';

ele.addEventListener('click',(e)=>{

ele.style.opacity = '0';

})

})

<div id="output">Complete JavaScript Course </div>

<div class="fader">One</div>

<div class="fader">Two</div>

<div class="fader">Three</div>

<div class="fader">Four</div>

<script src="app1.js"></script>

Laurence Svekis https://basescripts.com/

https://basescripts.com/

How to create page HTML elements with JavaScript

code append prepend before after pure JavaScript

How to append and add new page elements with JavaScript

How to append and add new page elements with JavaScript using

append, appendChild, prepend, before and after methods to

dynamically add and reposition page elements

Create Page elements with Code

How to append and add new page elements with JavaScript

const output = document.querySelector('#output');

Laurence Svekis https://basescripts.com/

https://basescripts.com/

const pageBody = document.body;

const el1 = document.createElement('h1');

el1.textContent = 'Hello World 1';

console.log(el1);

pageBody.append(el1);

output.append(el1);

const res1 = output.appendChild(el1);

console.log(res1);

res1.textContent = 'Hello 1';

el1.textContent = 'Hello 2';

output.before(el1);

output.after(el1);

output.prepend(el1);

const ul = document.createElement('ul');

output.append(ul);

for(let i=0;i<10;i++){

const li1 = document.createElement('li');

li1.textContent = `#${i+1}`;

ul.append(li1);

}

Laurence Svekis https://basescripts.com/

https://basescripts.com/

Regex Checking for Numbers in the input field

Check for values that match a Regex pattern in the input field.

Push a button and apply the match checker to return the results

in the console.

/^[0-9]*$/g = Only numbers in the string

/[0-9]+/g = Will return numbers in the result ignore non digits

0-9

/[\D]/g = Every Character other than digits

/\d/g = Digits separated

Laurence Svekis https://basescripts.com/

https://basescripts.com/

<!DOCTYPE html>

<html>

<head>

<title>JavaScript Course</title>

</head>

<body>

<div>

<input type="text" id="nums">

<button id="btn">Checker</button>

</div>

<script src="app.js"></script>

</body>

</html>

const nums = document.querySelector('#nums');

const btn = document.querySelector('#btn');

btn.onclick = ()=>{

const inputValue = nums.value;

const patt = /^[0-3]*$/g;

const results = inputValue.match(patt);

console.log(results);

const valNum = results != null;

console.log(valNum);

Laurence Svekis https://basescripts.com/

https://basescripts.com/

}

Laurence Svekis https://basescripts.com/

https://basescripts.com/

