
1

10 Top JavaScript Questions with
Examples of Code
JavaScript Coding Questions with Example Code

What is the difference between let and var in JavaScript? 2

What is the this keyword in JavaScript? 3

What is the difference between == and === in JavaScript? 4

What is a closure in JavaScript? 5

What is the forEach() method in JavaScript? 6

What is the difference between null and undefined in JavaScript? 7

What is the difference between synchronous and asynchronous code in
JavaScript? 8

What is a promise in JavaScript? 9

What is the difference between slice() and splice() in JavaScript? 10

Laurence Svekis https://basescripts.com/

https://basescripts.com/


2

What is hoisting in JavaScript? 11

What is the difference between let and var in

JavaScript?

var is a keyword used to declare a variable in JavaScript, whereas

let is a relatively new keyword that was introduced in ES6. The

main difference between the two is in their scoping rules.

Variables declared with var have function-level scope, meaning

they are accessible anywhere within the function in which they

are declared, even if they are declared within a block. Variables

declared with let, on the other hand, have block-level scope,

meaning they are only accessible within the block in which they

are declared.

Example:

function myFunction() {

var x = 10;

if (true) {

var x = 20;

console.log(x); // Output: 20

}

console.log(x); // Output: 20

}

Laurence Svekis https://basescripts.com/

https://basescripts.com/


3

function myFunction() {

let x = 10;

if (true) {

let x = 20;

console.log(x); // Output: 20

}

console.log(x); // Output: 10

}

What is the this keyword in JavaScript?

The this keyword in JavaScript refers to the object that the

function is a method of. In other words, it refers to the object

that the function is bound to. The value of this depends on how

the function is called. When a function is called in the global

scope, this refers to the global object (window in a web browser).

When a function is called as a method of an object, this refers to

that object. When a function is called with the new keyword, this

refers to the newly created object.

Example:

let person = {

Laurence Svekis https://basescripts.com/

https://basescripts.com/


4

firstName: "John",

lastName: "Doe",

fullName: function() {

console.log(this.firstName + " " + this.lastName);

}

};

person.fullName(); // Output: John Doe

What is the difference between == and ===

in JavaScript?

== is an equality operator that compares two values for equality,

but it does type coercion. This means that it tries to convert the

values to a common type before comparing them. === is a strict

equality operator that compares two values for equality without

type coercion. It checks if the values are of the same type and

have the same value.

Example:

console.log(5 == "5"); // Output: true

console.log(5 === "5"); // Output: false

Laurence Svekis https://basescripts.com/

https://basescripts.com/


5

What is a closure in JavaScript?

A closure in JavaScript is created when a function returns another

function that has access to the variables in the outer function,

even after the outer function has returned. This allows the inner

function to access and manipulate the variables in the outer

function, even if the outer function is no longer executing.

Example:

function outerFunction() {

let count = 0;

return function innerFunction() {

count++;

console.log(count);

}

}

let counter = outerFunction();

counter(); // Output: 1

counter(); // Output: 2

counter(); // Output: 3

Laurence Svekis https://basescripts.com/

https://basescripts.com/


6

What is the forEach() method in JavaScript?

The forEach() method in JavaScript is a method of the Array

object that allows you to loop through the elements of an array

and perform a function on each element. It takes a callback

function as its argument, which is executed for each element in

the array. The callback function takes three arguments: the

current element, the index of the current element, and the array

itself.

Example:

let numbers = [1, 2, 3, 4, 5];

numbers.forEach(function(number) {

console.log(number);

});

// Output:

// 1

// 2

// 3

// 4

// 5

numbers.forEach(function(number, index) {

console.log(index + ": " + number);

});

Laurence Svekis https://basescripts.com/

https://basescripts.com/


7

// Output:

// 0: 1

// 1: 2

// 2: 3

// 3: 4

// 4: 5

What is the difference between null and

undefined in JavaScript?

null and undefined are both values in JavaScript that represent

the absence of a value. null is a value that represents a deliberate

non-value, while undefined is a value that represents an

unintentional non-value. null is usually assigned by the

programmer to indicate that a variable has no value, while

undefined is usually the default value of a variable that has not

been initialized.

Example:

let x;

console.log(x); // Output: undefined

let y = null;

Laurence Svekis https://basescripts.com/

https://basescripts.com/


8

console.log(y); // Output: null

What is the difference between synchronous

and asynchronous code in JavaScript?

Synchronous code is code that executes in a sequence, one line

after another, and the program waits for each line to finish before

moving on to the next. Asynchronous code, on the other hand,

allows the program to continue executing while a certain task is

being performed in the background. Asynchronous code uses

callbacks, promises, or async/await to handle the results of the

task when it is finished.

Example:

// Synchronous code

console.log("Line 1");

console.log("Line 2");

console.log("Line 3");

// Output:

// Line 1

// Line 2

// Line 3

Laurence Svekis https://basescripts.com/

https://basescripts.com/


9

// Asynchronous code using setTimeout()

console.log("Line 1");

setTimeout(function() {

console.log("Line 2");

}, 2000);

console.log("Line 3");

// Output:

// Line 1

// Line 3

// Line 2 (after 2 seconds)

What is a promise in JavaScript?

A promise in JavaScript is an object that represents a value that

may not be available yet, but will be resolved at some point in the

future. It is used to handle asynchronous code and provides a

way to chain asynchronous operations together. A promise can be

in one of three states: pending (initial state), fulfilled (resolved

successfully), or rejected (resolved with an error).

Example:

let promise = new Promise(function(resolve, reject) {

Laurence Svekis https://basescripts.com/

https://basescripts.com/


10

setTimeout(function() {

resolve("Success!");

}, 2000);

});

promise.then(function(result) {

console.log(result); // Output: Success!

}).catch(function(error) {

console.log(error);

});

What is the difference between slice() and

splice() in JavaScript?

slice() and splice() are both methods that can be used to

manipulate arrays in JavaScript. The main difference between the

two is that slice() returns a new array with a portion of the

original array, while splice() modifies the original array by adding

or removing elements.

Example:

let numbers = [1, 2, 3, 4, 5];

Laurence Svekis https://basescripts.com/

https://basescripts.com/


11

let slicedNumbers = numbers.slice(1, 3);

console.log(slicedNumbers); // Output: [2, 3]

let splicedNumbers = numbers.splice(1, 2);

console.log(splicedNumbers); // Output: [2, 3]

console.log(numbers); // Output: [1, 4]

What is hoisting in JavaScript?

Hoisting is a JavaScript mechanism where variables and function

declarations are moved to the top of their respective scopes

before code execution. This means that variables and functions

can be used before they are declared, as long as they are

declared in the same scope.

Example:

console.log(x); // Output: undefined

var x = 5;

// The code above is equivalent to:

var x;

console.log(x); // Output: undefined

x = 5;

Laurence Svekis https://basescripts.com/

https://basescripts.com/


12

// Hoisting also applies to function declarations

sayHello();

function sayHello() {

console.log("Hello!");

}

In the example above, the variable x is declared after it is used,

but it still works because of hoisting. Similarly, the function

sayHello() is called before it is declared, but it still works because

of hoisting.

Note that hoisting only applies to declarations, not to

initializations. In the example above, the variable x is hoisted but

its value is still undefined until it is assigned the value of 5.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

