
1

Google Apps Script Quick Start
Guide

Introduction to Google Apps Script 2
Brief overview of Google Apps Script 3
Benefits of using Google Apps Script 4

Getting Started with Google Apps Script 5
Setting up a Google account 6
Enabling Google Apps Script 7
Creating a new script project 8
Understanding the script editor interface 9

Fundamentals of Google Apps Script 10
Understanding the structure of a script 11
Writing and executing basic code 12
Debugging code 13

Building Custom Functions Apps Script 14
Creating and using custom functions 15
Passing parameters to custom functions 17
Working with return values 18

Integrating with Google Services 20
Accessing and manipulating Google Sheets 21
Using Google Forms for data input 23

Laurence Svekis https://basescripts.com/

https://basescripts.com/

2

Sending emails with Gmail 24
Creating and deploying Google web apps 26

Advanced Topics Google Apps Script 29
Working with APIs 30
Handling errors and exceptions 31
Creating user interfaces with Google Apps Script 32

Best Practices for Google Apps Script 33
Tips for writing efficient and effective code 34
Strategies for testing and debugging 35
Recommendations for documentation and version control 36

Conclusion Google Apps Script 37
Recap of key points 37
Resources for learning more about Google Apps Script 38

Sample code Google Apps Script and AI 39

Introduction to Google Apps Script

Introduction to Google Apps Script provides an overview of what Apps Script

is and what it can do. It is a platform for building custom applications and

automating tasks within the Google ecosystem. It uses JavaScript to extend

the functionality of various Google services such as Sheets, Forms, and

Gmail.

There are several benefits to using Apps Script, including its ability to

automate repetitive tasks, create custom functions, and integrate with other

Google services.

To get started with Apps Script, you need a Google account and access to a

Google service. You can create a new script project within the service and

use the script editor interface to write and execute code.

Apps Script offers several advanced features, including the ability to work

with APIs, create user interfaces, and handle errors and exceptions. Best

Laurence Svekis https://basescripts.com/

https://basescripts.com/

3

practices for Apps Script include writing efficient and effective code, testing

and debugging, and documenting your code.

There are many resources available for learning more about Apps Script,

including the Google Developers website, Apps Script Community, and

Udemy courses. By using these resources, you can become more proficient

in building custom applications and automating tasks within the Google

ecosystem.

Brief overview of Google Apps Script

Google Apps Script is a scripting language and platform that allows you to

extend and automate the functionality of various Google apps, such as

Google Sheets, Docs, Forms, and Gmail. It is built on top of JavaScript and

provides a simple yet powerful way to create custom functions, automate

repetitive tasks, and integrate with other Google services and APIs. With

Google Apps Script, you can write code that interacts with Google apps,

sends emails, fetches data from external sources, and more. Google Apps

Script is accessible from the Google Sheets, Docs, Forms, and Gmail

interfaces, as well as the standalone script editor. It's a free tool provided by

Google and requires only a Google account to get started.

In summary, Google Apps Script is a scripting language and platform

developed by Google that allows users to extend and automate the

functionality of various Google apps such as Sheets, Docs, Forms, and

Gmail. It is based on JavaScript and offers a simple yet powerful way to

write custom functions and automate repetitive tasks within the Google

ecosystem. Google Apps Script can be accessed from within the various

Google apps or via the standalone script editor. It provides a free and

Laurence Svekis https://basescripts.com/

https://basescripts.com/

4

accessible way to enhance the functionality of Google apps without the need

for advanced coding skills or additional software.

Benefits of using Google Apps Script

There are several benefits to using Google Apps Script, including:

● Customization: With Google Apps Script, you can create custom

functions and scripts that tailor the behavior of various Google apps to

your specific needs. This can help you to automate repetitive tasks,

streamline workflows, and increase productivity.

● Integration: Google Apps Script provides an easy way to integrate

with other Google services and APIs, as well as external data sources.

This can help you to access and manipulate data from different

sources within a single script.

● Collaboration: Google Apps Script makes it easy to collaborate with

others on scripts and projects. You can share scripts with other users,

assign different levels of access, and work together on projects in

real-time.

● Accessibility: Google Apps Script is built into various Google apps

such as Sheets, Docs, Forms, and Gmail, so you can easily access and

use it without needing to install any additional software.

● Free: Google Apps Script is a free tool provided by Google, making it

accessible to individuals and organizations of all sizes.

● Easy to Learn: Google Apps Script is built on top of JavaScript, which

is a popular and widely-used programming language. As such,

developers and non-developers alike can quickly learn how to use

Google Apps Script to create custom solutions.

● Security: Google Apps Script is built and maintained by Google, which

has a strong track record for security and privacy. As such, using

Laurence Svekis https://basescripts.com/

https://basescripts.com/

5

Google Apps Script to handle sensitive data is generally considered

safe and secure.

● Scalability: Google Apps Script is designed to handle large amounts

of data and processing, making it a scalable solution for both small

and large-scale projects.

● Extensive Libraries: Google Apps Script includes a wide range of

pre-built libraries and APIs, such as the Google Drive API, Google Maps

API, and Google Calendar API. These libraries can help you to quickly

integrate with other Google services and third-party applications.

● Versatility: Google Apps Script can be used for a wide range of

applications, from data analysis and visualization to automation and

machine learning. As such, it provides a versatile and flexible toolset

for developers and non-developers alike.

Overall, Google Apps Script provides a flexible and powerful way to

customize, automate, and extend the functionality of various Google apps,

without the need for advanced coding skills or additional software. The

combination of easy learning curve, security, scalability, extensive libraries,

and versatility makes Google Apps Script a popular choice for creating

custom solutions and automating workflows within the Google ecosystem.

Getting Started with Google Apps Script

Getting Started with Google Apps Script is an introductory guide that covers

the basics of using Apps Script to automate tasks and extend the

functionality of Google services such as Sheets, Forms, and Gmail.

The guide outlines the steps for setting up a Google account and enabling

Apps Script within a Google service. It also covers the basics of the script

editor interface and the structure of a script.
Laurence Svekis https://basescripts.com/

https://basescripts.com/

6

The guide then walks through the process of writing and executing basic

code, as well as creating and using custom functions. It also covers

advanced topics such as working with APIs, creating user interfaces, and

handling errors and exceptions.

Best practices for Apps Script are also highlighted, including tips for writing

efficient and effective code, testing and debugging, and documenting your

code.

Overall, Getting Started with Google Apps Script provides a solid foundation

for anyone looking to use Apps Script to automate tasks and extend the

functionality of Google services.

Setting up a Google account

Here are the steps to set up a Google account:

1. Go to the Google sign-up page at https://accounts.google.com/signup.

2. Enter your first and last name in the appropriate fields.

3. Choose a username for your account. This will also become your Gmail

address.

4. Create a password for your account. Make sure it is strong and

contains a mix of letters, numbers, and symbols.

5. Confirm your password by entering it again in the next field.

6. Enter your birthdate and gender in the appropriate fields.

7. Enter your phone number and an alternate email address, if you have

them. These are optional but can be useful if you forget your password

or need to recover your account.

8. Complete the "Prove you're not a robot" security check.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

7

9. Review the Terms of Service and Privacy Policy, then click "I agree" to

create your account.

10. Verify your account by following the instructions in the confirmation

email that will be sent to the email address you provided during

sign-up.

Once your account is set up, you can use it to access various Google

services, such as Gmail, Google Drive, and Google Sheets, as well as Google

Apps Script.

Enabling Google Apps Script

Google Apps Script is a powerful tool that allows you to extend and

automate the functionality of various Google apps. However, before you can

use it, you need to enable it for your account. Here are the steps to enable

Google Apps Script:

1. Open the Google app where you want to use Apps Script. For example,

if you want to use it with Google Sheets, open a Google Sheet.

2. Click on the "Tools" menu and select "Script editor".

3. If you see a dialog box asking you to choose a Google account, select

the account that you want to use with Apps Script.

4. If this is the first time you're using Apps Script with this account, you

may be asked to review and accept the Google Apps Script terms of

service.

5. Once you've reviewed and accepted the terms of service, the Apps

Script editor will open.

6. You may be prompted to give Apps Script permission to access your

Google account. If so, click "Allow" to grant permission.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

8

7. You're now ready to start using Google Apps Script! You can create a

new script, open an existing one, or use one of the many templates

available to get started.

Enabling Google Apps Script is a straightforward process, and once it's

enabled, you can start using it to automate tasks, extend functionality, and

integrate with other Google services. Just remember to review the terms of

service and give the necessary permissions when prompted to ensure that

your use of Apps Script is secure and compliant.

Creating a new script project

Creating a new script project in Google Apps Script is a simple process. Here

are the steps to create a new script project:

1. Open the Google app where you want to use Apps Script. For example,

if you want to use it with Google Sheets, open a Google Sheet.

2. Click on the "Tools" menu and select "Script editor". This will open the

Apps Script editor in a new tab.

3. In the Apps Script editor, click on "File" and then select "New project".

This will open a new script project with a default file named "Code.gs".

4. Rename the project by clicking on the "Untitled project" text at the top

of the page and typing in a new name for your project.

5. Add code to your project by clicking on the "Code.gs" file in the

left-hand pane and typing in your code. You can also create new files

by clicking on "File" and selecting "New file".

6. Save your project by clicking on "File" and selecting "Save". This will

save your project to your Google Drive account.

7. When you're ready to run your script, you can do so by clicking on the

"Run" menu and selecting the function that you want to run.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

9

Creating a new script project is a crucial step in using Google Apps Script to

automate tasks and extend the functionality of various Google apps. By

following these simple steps, you can quickly create a new project and start

adding your code to it. Remember to save your project regularly to ensure

that your work is not lost, and to run your code frequently to test and debug

it as you go.

Understanding the script editor interface

The Google Apps Script editor interface is a powerful tool for creating and

editing scripts. Understanding its various features can help you be more

productive and efficient when working with Apps Script. Here's an overview

of the main components of the Apps Script editor interface:

1. Menu bar: The menu bar contains various menu items that allow you

to perform actions such as creating a new script, running your code,

and accessing the script settings.

2. Toolbar: The toolbar contains buttons that allow you to perform

common actions such as saving your script, undoing and redoing

changes, and debugging your code.

3. Code editor: The code editor is where you write your code. It contains

various features such as syntax highlighting, autocompletion, and

error checking to help you write clean, error-free code.

4. Console: The console is where you can view the output of your code

and any error messages that are generated. You can also use it to log

messages and debug your code.

5. File navigator: The file navigator allows you to navigate between the

different files in your script project. You can use it to create new files,

rename files, and delete files.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

10

6. Triggers: Triggers are used to automatically run your code in

response to certain events, such as opening a Google Sheet or

receiving an email. You can create, edit, and manage triggers in the

"Triggers" section of the editor.

7. Services: The "Services" section of the editor allows you to add and

manage the various Google services that your code interacts with,

such as Google Sheets, Gmail, and Google Drive.

Understanding the various components of the Apps Script editor interface

can help you be more efficient when working with Apps Script. Take some

time to explore the different menus, tools, and features, and experiment

with writing and running code to get a feel for how it all works together.

Fundamentals of Google Apps Script

Fundamentals of Google Apps Script is a guide that provides an in-depth

look at the basics of using Apps Script to extend the functionality of Google

services such as Sheets, Forms, and Gmail.

The guide covers topics such as the structure of a script, creating and using

custom functions, and passing parameters to functions. It also provides an

overview of how to access and manipulate Google Sheets data and use

Google Forms for data input.

In addition, the guide walks through the process of creating and deploying

Google web apps, which can be used to provide custom user interfaces and

functionality. It also covers advanced topics such as working with APIs,

handling errors and exceptions, and creating user interfaces with Apps

Script.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

11

Throughout the guide, best practices for Apps Script are emphasized,

including tips for writing efficient and effective code, testing and debugging,

and documenting your code.

Overall, Fundamentals of Google Apps Script provides a comprehensive

overview of the basics of using Apps Script and lays the foundation for more

advanced topics covered in later sections.

Understanding the structure of a script

Google Apps Script is a scripting language that allows you to automate tasks

and extend the functionality of various Google apps. Understanding the

structure of a script is essential to writing effective and efficient code. Here's

an overview of the basic structure of a script:

1. Comments: Comments are lines of text in your code that are not

executed by the computer. They are used to provide information about

the code and to help other developers understand how the code works.

In Apps Script, comments start with "//" for single-line comments and

"/* */" for multi-line comments.

2. Libraries: Libraries are reusable pieces of code that can be included in

multiple scripts. They allow you to write code once and use it in

multiple places. You can add libraries to your script by going to the

"Resources" menu and selecting "Libraries".

3. Global variables and functions: Global variables and functions are

declared outside of any function and are available to all functions in

the script. They are used to store information or to perform actions

that need to be available throughout the entire script.

4. Functions: Functions are blocks of code that perform a specific task.

They are the building blocks of your script and are called by other

Laurence Svekis https://basescripts.com/

https://basescripts.com/

12

functions or by triggers. Functions can take parameters and return

values.

5. Triggers: Triggers are special functions that are automatically

executed by Apps Script in response to certain events, such as opening

a Google Sheet or receiving an email. They are used to automate tasks

and perform actions without manual intervention.

6. Objects and methods: Objects and methods are the core of the Apps

Script API. Objects represent things like Sheets, Drive files, and Gmail

messages, while methods are actions that can be performed on those

objects. By calling methods on objects, you can interact with Google

services and manipulate data.

Understanding the structure of a script is essential to writing effective and

efficient code in Google Apps Script. By using comments, libraries, global

variables and functions, functions, triggers, objects, and methods, you can

create powerful and automated scripts that help you work smarter, not

harder.

Writing and executing basic code

To write and execute basic code in Google Apps Script, you can follow these

steps:

1. Open the script editor: To open the script editor, go to the Google app

you want to automate (such as Google Sheets or Google Docs), click

on the "Tools" menu, and select "Script editor".

2. Write your code: In the script editor, you can write your code in the

code editor. For example, you can write a function that creates a new

Google Sheet and adds data to it. Here's an example:

function createNewSheet() {

Laurence Svekis https://basescripts.com/

https://basescripts.com/

13

var sheet = SpreadsheetApp.create("My New Sheet");

var data = [["Name", "Age", "Email"],

["John Smith", 30, "john@example.com"],

["Jane Doe", 25, "jane@example.com"]

];

sheet.getActiveSheet().getRange("A1:C3").setValues(data);

}

3. Save your code: After you've written your code, click on the "Save"

button in the toolbar to save your script. Give your script a name and

click "OK".

4. Test your code: To test your code, you can run it by clicking on the

"Run" button in the toolbar. This will execute your function and create

a new Google Sheet with the data you specified.

Writing and executing basic code in Google Apps Script is a simple process

that can be done in just a few steps. By writing functions that automate

tasks in your Google apps, you can save time and increase your productivity.

As you become more familiar with Apps Script, you can explore more

advanced features such as triggers, libraries, and object-oriented

programming to create even more powerful and automated scripts.

Debugging code

Debugging code is an essential part of writing and testing scripts in Google

Apps Script. Debugging can help you identify and fix errors in your code,

ensuring that your script runs smoothly and efficiently. Here are some tips

for debugging code in Google Apps Script:

Laurence Svekis https://basescripts.com/

https://basescripts.com/

14

1. Use console.log() statements: Console.log() statements are a simple

way to print out the value of a variable or the result of a function. By

adding console.log() statements throughout your code, you can track

the values of variables and identify where errors are occurring.

2. Use the debugger: The debugger is a built-in tool in the Apps Script

editor that allows you to step through your code line by line, pause

execution, and inspect variables. To use the debugger, add a

breakpoint to your code by clicking on the line number where you want

to pause execution, then click on the "Debug" button in the toolbar.

This will launch the debugger and allow you to step through your code.

3. Check the execution transcript: The execution transcript is a log of all

the actions taken by your script, including any errors that occurred. To

view the execution transcript, click on the "View" menu in the script

editor and select "Execution transcript".

4. Use try-catch blocks: Try-catch blocks are a way to handle errors in

your code without stopping the entire script. By wrapping potentially

problematic code in a try block and catching any errors in a catch

block, you can prevent your script from crashing and provide more

useful error messages.

Debugging code in Google Apps Script can be challenging, but with the right

tools and techniques, you can quickly identify and fix errors in your code. By

using console.log() statements, the debugger, the execution transcript, and

try-catch blocks, you can debug your code more effectively and create more

reliable and efficient scripts.

Building Custom Functions Apps Script

Building Custom Functions is a section in the Google Apps Script guide that

focuses on creating and using custom functions in Apps Script. The section
Laurence Svekis https://basescripts.com/

https://basescripts.com/

15

begins by discussing the benefits of custom functions, including their ability

to automate complex calculations and processes in Google Sheets.

The guide then covers the process of creating custom functions, including

how to define function parameters, return values, and use various data

types. It also provides examples of using custom functions to manipulate

data in Sheets, such as converting units of measurement or calculating

averages.

In addition, the section covers advanced topics such as using custom

functions to access data from external APIs and working with arrays and

objects in custom functions.

Overall, Building Custom Functions provides a comprehensive overview of

how to create and use custom functions in Apps Script, providing practical

examples and best practices to help users automate and streamline their

workflows in Google Sheets.

Creating and using custom functions

Custom functions are a powerful feature in Google Sheets that allow you to

extend the functionality of the built-in functions by creating your own

custom functions. With custom functions, you can perform complex

calculations, automate repetitive tasks, and simplify your workflow in Google

Sheets. Here's how to create and use custom functions in Google Apps

Script:

1. Create a new script project: To create a new script project, open the

Google Sheet where you want to create your custom function, click on

the "Tools" menu, and select "Script editor".

Laurence Svekis https://basescripts.com/

https://basescripts.com/

16

2. Write your custom function: In the script editor, write your custom

function using the same syntax as built-in functions. For example, you

can write a custom function that calculates the average of a range of

cells:

function AVG(range) {

var sum = 0;

var count = 0;

range.forEach(function(row) {

row.forEach(function(cell) {

if(cell != "") {

sum += cell;

count++;

}

});

});

return sum / count;

}

This function takes a range of cells as an input and returns the average

of the non-empty cells.

3. Save your script: After you've written your custom function, click on

the "Save" button in the toolbar to save your script. Give your script a

name and click "OK".

4. Use your custom function: To use your custom function in your Google

Sheet, simply type the function name and its arguments in a cell. For

example, if you named your function AVG, you can use it like this:

=AVG(A1:A10)

This will calculate the average of the cells in the range A1:A10.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

17

Creating and using custom functions in Google Apps Script is a simple way to

extend the functionality of Google Sheets and automate repetitive tasks. By

writing custom functions that perform complex calculations or manipulate

data in new ways, you can save time and increase your productivity in

Google Sheets.

Passing parameters to custom functions

In addition to taking ranges or cell references as inputs, custom functions in

Google Sheets can also take parameters as inputs. These parameters can be

numbers, strings, booleans, or arrays, and can be used to customize the

behavior of the function based on the user's needs. Here's how to pass

parameters to custom functions in Google Apps Script:

1. Define your function parameters: To define parameters for your

custom function, include them in the function declaration in

parentheses, separated by commas. For example, to create a custom

function that calculates the interest on a loan, you could define

parameters for the principal, the interest rate, and the number of

payments:

function LOANINTEREST(principal, rate, payments) {

var interest = principal * rate * payments / 12;

return interest;

}

In this function, the principal, rate, and payments are parameters that

the user can specify when they call the function.

2. Call your custom function with parameters: To call your custom

function with parameters, simply include the values of the parameters

in the function call, separated by commas. For example, to calculate

Laurence Svekis https://basescripts.com/

https://basescripts.com/

18

the interest on a $10,000 loan at 5% interest for 12 months, you

would use the following function call:

=LOANINTEREST(10000, 0.05, 12)

This would return the value of $500, which is the interest on the loan.

3. Use default values for parameters: If you want to provide default

values for your function parameters, you can do so by including them

in the function declaration with an equals sign. For example, to provide

a default value of 12 payments for the LOANINTEREST function, you

could modify the function declaration like this:

function LOANINTEREST(principal, rate, payments=12) {

var interest = principal * rate * payments / 12;

return interest;

}

In this function, the payments parameter has a default value of 12, so

if the user doesn't specify a value for payments when they call the

function, it will use the default value.

By allowing users to pass parameters to your custom functions, you can

create more flexible and customizable functions that can be used in a wide

variety of situations. With simple modifications to the function declaration,

you can define default values for parameters or create custom functions that

take multiple parameters of different types.

Working with return values

When you write a function in Google Apps Script, you'll usually want it to

return a value that can be used elsewhere in your code. The return value of

a function is the value that the function "outputs" when it is executed, and it

can be used as an input to other functions or stored in a variable for later

use.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

19

To return a value from a function in Google Apps Script, you can use the

return statement followed by the value you want to return. Here's an

example:

function square(x) {

return x * x;

}

In this function, the return statement returns the value of x squared. When

the function is executed, this value will be returned to the code that called

the function, where it can be used for further calculations or stored in a

variable.

To use the return value of a function, you can assign it to a variable or pass

it as an input to another function. Here are some examples:

var result = square(4); // Assigns the value 16 to the variable

"result"

var total = square(2) + square(3); // Adds the values 4 and 9 to

get 13

var length = "hello".length; // Gets the length of the string

"hello" (which is 5)

var message = "The square of 4 is " + square(4); // Creates a

string that says "The square of 4 is 16"

In each of these examples, the return value of the square function is used in

a different way. By returning values from your functions, you can create

more flexible and powerful scripts that can perform a wide variety of tasks.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

20

Integrating with Google Services

Integrating with Google Services is a section in the Google Apps Script guide

that focuses on using Apps Script to work with various Google services, such

as Sheets, Forms, and Gmail.

The section begins by discussing the benefits of using Apps Script to

automate tasks and processes in these services, including the ability to

easily access and manipulate data, create custom reports, and automate

email workflows.

The guide then provides practical examples of how to use Apps Script to

work with each service, including reading and writing data to Sheets,

creating custom forms with Forms, and sending automated emails with

Gmail.

In addition, the section covers advanced topics such as using Apps Script to

create custom dashboards, accessing and manipulating data in Google Drive,

and using Apps Script with Google Analytics.

Overall, Integrating with Google Services provides a comprehensive

overview of how to use Apps Script to work with various Google services,

providing practical examples and best practices to help users automate and

streamline their workflows in the Google ecosystem.

Integrating with Google Services in Google Apps Script involves using built-in

APIs and services to interact with Google products such as Google Sheets,

Google Docs, Gmail, and Google Drive. By leveraging these APIs and

Laurence Svekis https://basescripts.com/

https://basescripts.com/

21

services, you can automate tasks and create custom workflows that interact

with and manipulate data within these products.

For example, you could create a script that automatically sends personalized

emails to a list of contacts stored in a Google Sheet, or a script that creates

new Google Docs from a template and populates them with data from a

Google Form.

Integrating with Google Services requires you to have the necessary

permissions and credentials to access the Google product you want to

interact with. You can access these credentials and permissions by creating a

project in the Google Cloud Console and enabling the necessary APIs.

Once you have access, you can use the Google Apps Script code editor to

write and deploy scripts that interact with Google Services. You can use the

built-in libraries and APIs to perform tasks such as reading and writing data

to Google Sheets, sending emails with Gmail, or creating and managing files

in Google Drive.

Integrating with Google Services can be a powerful way to automate tasks

and streamline your workflows. With Google Apps Script, you can create

custom scripts that interact with the Google products you use every day,

making your work more efficient and effective.

Accessing and manipulating Google Sheets

Google Sheets is a powerful tool for organizing and analyzing data, and with

Google Apps Script, you can automate tasks and create custom workflows

that interact with your Sheets. Here are some ways you can use Google

Apps Script to access and manipulate your Google Sheets:

Laurence Svekis https://basescripts.com/

https://basescripts.com/

22

Reading data from Sheets: You can use the getRange() method to

retrieve a specific range of cells from your Sheet and access their values. For

example, the following code retrieves the value of cell A1 in the Sheet

named "MySheet":

var sheet =

SpreadsheetApp.getActiveSpreadsheet().getSheetByName("MySheet");

var value = sheet.getRange("A1").getValue();

Writing data to Sheets: You can use the setValue() method to set the

value of a cell in your Sheet. For example, the following code sets the value

of cell A1 in the Sheet named "MySheet" to the number 42:

var sheet =

SpreadsheetApp.getActiveSpreadsheet().getSheetByName("MySheet");

sheet.getRange("A1").setValue(42);

Manipulating data in Sheets: You can use a combination of the

getRange() and setValue() methods to manipulate data in your Sheet. For

example, the following code adds 1 to the value of cell A1 in the Sheet

named "MySheet":

var sheet =

SpreadsheetApp.getActiveSpreadsheet().getSheetByName("MySheet");

var value = sheet.getRange("A1").getValue();

sheet.getRange("A1").setValue(value + 1);

Working with multiple Sheets: You can use the getSheets() method to

access all the Sheets in a Spreadsheet and loop through them to perform

operations. For example, the following code sets the value of cell A1 in all

the Sheets in the current Spreadsheet to the number 42:

Laurence Svekis https://basescripts.com/

https://basescripts.com/

23

var sheets = SpreadsheetApp.getActiveSpreadsheet().getSheets();

for (var i = 0; i < sheets.length; i++) {

sheets[i].getRange("A1").setValue(42);

}

By leveraging the power of Google Sheets and Google Apps Script, you can

automate tasks and create custom workflows that make your work more

efficient and effective.

Using Google Forms for data input

Google Forms is a useful tool for collecting data from individuals, whether it's

for surveys, registrations, or other types of data input. With Google Apps

Script, you can use the data collected in a Google Form to automate tasks

and create custom workflows. Here's how you can use Google Apps Script to

work with Google Forms:

Accessing form responses: You can use the Form service in Google Apps

Script to access the responses submitted through a Google Form. For

example, the following code retrieves the responses for the form with the ID

"FormID":

var form = FormApp.openById("FormID");

var responses = form.getResponses();

Extracting form data: You can use the getResponse() method to extract

the data from individual form responses. For example, the following code

retrieves the data for the first response to the form:

var form = FormApp.openById("FormID");

var responses = form.getResponses();

var response = responses[0];

Laurence Svekis https://basescripts.com/

https://basescripts.com/

24

var itemResponses = response.getItemResponses();

Processing form data: Once you have the form data, you can use it to

automate tasks or create custom workflows. For example, you could use the

form data to populate a Google Sheet or to send customized emails to the

respondents.

Triggering scripts with form submissions: You can use the

onFormSubmit() trigger in Google Apps Script to execute a script

automatically whenever a form response is submitted. For example, the

following code sends an email to the respondent with a customized message

when they submit the form:

function sendEmail(e) {

var form = FormApp.openById("FormID");

var response = e.response;

var respondentEmail = response.getRespondentEmail();

var itemResponses = response.getItemResponses();

// Construct email message based on form data

// ...

// Send email

MailApp.sendEmail(respondentEmail, "Thank you for your

submission", message);

}

By using Google Forms and Google Apps Script together, you can automate

tasks and create custom workflows that streamline your data input and

processing workflows.

Sending emails with Gmail

Google Forms is a useful tool for collecting data from individuals, whether it's

for surveys, registrations, or other types of data input. With Google Apps
Laurence Svekis https://basescripts.com/

https://basescripts.com/

25

Script, you can use the data collected in a Google Form to automate tasks

and create custom workflows. Here's how you can use Google Apps Script to

work with Google Forms:

Accessing form responses: You can use the Form service in Google Apps

Script to access the responses submitted through a Google Form. For

example, the following code retrieves the responses for the form with the ID

"FormID":

var form = FormApp.openById("FormID");

var responses = form.getResponses();

Extracting form data: You can use the getResponse() method to extract

the data from individual form responses. For example, the following code

retrieves the data for the first response to the form:

var form = FormApp.openById("FormID");

var responses = form.getResponses();

var response = responses[0];

var itemResponses = response.getItemResponses();

Processing form data: Once you have the form data, you can use it to

automate tasks or create custom workflows. For example, you could use the

form data to populate a Google Sheet or to send customized emails to the

respondents.

Triggering scripts with form submissions: You can use the

onFormSubmit() trigger in Google Apps Script to execute a script

automatically whenever a form response is submitted. For example, the

following code sends an email to the respondent with a customized message

when they submit the form:

function sendEmail(e) {

Laurence Svekis https://basescripts.com/

https://basescripts.com/

26

var form = FormApp.openById("FormID");

var response = e.response;

var respondentEmail = response.getRespondentEmail();

var itemResponses = response.getItemResponses();

// Construct email message based on form data

// ...

// Send email

MailApp.sendEmail(respondentEmail, "Thank you for your

submission", message);

}

By using Google Forms and Google Apps Script together, you can automate

tasks and create custom workflows that streamline your data input and

processing workflows.

Creating and deploying Google web apps

Google Apps Script allows you to create custom web apps that are tightly

integrated with Google services such as Google Sheets, Google Drive, and

Google Forms. With Google Apps Script, you can create standalone web apps

or embed them within a Google Site or a Google Sheets sidebar.

Here's how you can create and deploy a Google web app with Google Apps

Script:

1. Creating a web app: To create a new web app, open the Google Apps

Script editor and select File > New > Web App. This will open the web

app configuration dialog box. In this dialog box, you can specify the

app's title, URL, and the scripts that will handle requests to the app.

2. Configuring the web app: In the web app configuration dialog box,

you can specify the access settings for your app. You can choose to
Laurence Svekis https://basescripts.com/

https://basescripts.com/

27

allow anyone to access the app, or you can restrict access to specific

users or groups. You can also specify the permissions that the app will

require to access Google services such as Google Sheets and Google

Drive.

3. Writing the app script: Once you have configured your web app, you

can start writing the scripts that will handle requests to the app. You

can use standard HTML, CSS, and JavaScript to create the user

interface for your app, and you can use Google Apps Script to handle

backend logic and data processing.

4. Deploying the app: Once you have written your app script, you can

deploy the app by clicking the "Deploy" button in the Google Apps

Script editor. This will open the deployment dialog box, where you can

specify the version of the app that you want to deploy and the access

settings for the deployed app.

5. Testing the app: After you have deployed your web app, you can test

it by opening the app's URL in a web browser. You can also use the

Google Apps Script debugger to troubleshoot any issues that you

encounter.

By creating and deploying Google web apps with Google Apps Script, you

can create custom workflows and applications that are tightly integrated with

Google services and that can streamline your business processes and data

management.

here's an example of a simple web app created with Google Apps Script that

displays the current time and date:

function doGet() {

var now = new Date();

Laurence Svekis https://basescripts.com/

https://basescripts.com/

28

var html = '<html><body><h1>Current time and date:</h1><p>' +

now + '</p></body></html>';

return HtmlService.createHtmlOutput(html);

}

Let's break down how this code works:

1. The doGet() function is a special function in Google Apps Script that is

called when the web app is accessed by a user. In this case, the

function returns an HTML page that displays the current time and date.

2. The new Date() function creates a new Date object that represents the

current time and date.

3. The html variable contains the HTML code that will be displayed by the

web app. This code includes a header (<h1>) that displays the text

"Current time and date:", and a paragraph (<p>) that displays the

current time and date as returned by the now variable.

4. The HtmlService.createHtmlOutput() function creates an HtmlOutput

object that represents the HTML page that will be displayed by the web

app. The createHtmlOutput() function takes the html variable as its

argument and returns the HtmlOutput object.

5. Finally, the return statement returns the HtmlOutput object to the

user's web browser, which displays the HTML page in the browser

window.

To create and deploy this web app in Google Apps Script, follow

these steps:

1. Open the Google Apps Script editor and create a new script project.

2. Copy and paste the above code into the script editor.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

29

3. Save the script project.

4. Click the "Deploy" button in the toolbar and select "New Deployment".

5. In the "Deployment Type" section, select "Web App".

6. In the "Project Version" section, select "New".

7. In the "Web App Configuration" section, specify the app's title,

description, and URL. You can also specify the access settings for the

app, such as whether to allow anyone to access the app or restrict

access to specific users or groups.

8. Click "Deploy".

9. Once the app has been deployed, you can access it by opening the

app's URL in a web browser. The app will display the current time and

date in the browser window.

Advanced Topics Google Apps Script

The advanced topics in Google Apps Script cover more complex concepts and

techniques, including:

1. Using external APIs: You can use Google Apps Script to interact with

external APIs, allowing you to retrieve data from other web services

and incorporate it into your script.

2. Custom menus and dialogs: You can create custom menus and dialogs

in Google Sheets and other Google apps, allowing users to access your

script's functionality more easily.

3. Creating add-ons: You can package your Google Apps Script project as

an add-on, which can be published to the G Suite Marketplace and

used by other users.

4. Managing user access: You can control who has access to your script

and what they are allowed to do with it by using Google's

authentication and authorization services.
Laurence Svekis https://basescripts.com/

https://basescripts.com/

30

5. Script triggers: You can set up triggers that automatically run your

script in response to specific events, such as changes to a spreadsheet

or the arrival of an email.

6. Advanced debugging: You can use more advanced debugging

techniques in Google Apps Script, such as logging and stack traces, to

help you diagnose and fix errors in your code.

These topics are more advanced and may require a higher level of

programming experience, but they can greatly expand the capabilities of

your Google Apps Script projects.

Working with APIs

Working with APIs in Google Apps Script allows you to integrate data and

functionality from external services into your projects. Here are the steps to

get started:

1. Find an API: Research APIs that provide the data or functionality you

need. Many APIs require registration and authorization before you can

use them.

2. Set up your project: Create a new Google Apps Script project or

open an existing one. Make sure your project is authorized to access

the API you want to use.

3. Retrieve data from the API: Use the URL Fetch service in Google

Apps Script to retrieve data from the API. You'll need to use the API's

URL and any necessary parameters to make the request.

4. Parse the data: Once you have the data from the API, you may need

to parse it to extract the information you need. This may involve using

regular expressions or other parsing techniques.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

31

5. Use the data in your project: Once you have the data you need, you

can use it in your Google Apps Script project. This may involve

displaying the data in a Google Sheet, sending it in an email, or using

it to perform other tasks.

6. Handle errors: Make sure to handle errors that may occur when

working with the API. This may involve checking for HTTP status codes

or handling exceptions that are thrown by the API.

Working with APIs in Google Apps Script can greatly expand the functionality

of your projects, allowing you to access a wide range of data and services

from external sources. However, it requires some programming knowledge

and understanding of APIs and web requests.

Handling errors and exceptions

Handling errors and exceptions in Google Apps Script is an important part of

writing robust code. Here are some key techniques to keep in mind:

1. Use try-catch blocks: Wrap any code that might generate an error in a

try-catch block. This will allow you to catch any exceptions that are

thrown and handle them gracefully.

2. Log errors: Use the Logger service in Google Apps Script to log any

errors or exceptions that occur. This will help you diagnose and fix

problems in your code.

3. Display user-friendly messages: If an error occurs that is visible to the

user, such as a dialog box or a message in a Google Sheet, make sure

the error message is clear and user-friendly.

4. Check for null values: When working with objects or arrays, make sure

to check for null values to avoid errors. You can use the typeof

operator or the === operator to check if a value is null.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

32

5. Check for API errors: When working with external APIs, make sure to

check for errors that may be returned by the API. This may involve

checking for HTTP status codes or looking for specific error messages

in the API response.

By handling errors and exceptions properly, you can make your Google Apps

Script projects more reliable and user-friendly. It's important to test your

code thoroughly and handle any errors that may occur to ensure a smooth

user experience.

Creating user interfaces with Google Apps Script

Google Apps Script provides a number of ways to create user interfaces for

your projects. Here are some of the most common techniques:

1. Using Google Forms: Google Forms is a simple way to create a user

interface for data input. You can create a form with fields for users to

fill out, and then use Google Apps Script to process the form data.

2. Using the HTML Service: The HTML Service allows you to create

custom web interfaces for your Google Apps Script projects. You can

use HTML, CSS, and JavaScript to create dynamic interfaces that can

interact with your code.

3. Using the GUI Builder: The GUI Builder is a visual interface designer

that allows you to create user interfaces for your projects without

writing any code. You can drag and drop components onto a canvas

and configure them with properties.

4. Using the Spreadsheet Service: The Spreadsheet Service provides a

way to create custom menu items and dialog boxes in Google Sheets.

You can use this to create custom interfaces that interact with your

Google Sheet data.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

33

No matter which technique you choose, it's important to design your user

interface with the user in mind. Make sure the interface is intuitive and easy

to use, and provide clear instructions and feedback to the user.

Best Practices for Google Apps Script

Here are some best practices to follow when working with Google Apps

Script:

1. Use meaningful variable and function names: Choose names that

accurately reflect what the variable or function does. This makes your

code more readable and easier to maintain.

2. Use comments to explain complex code: If you're writing code

that is particularly complex or difficult to understand, use comments to

explain what the code does and why it's necessary.

3. Break up long functions into smaller ones: Long functions can be

difficult to read and understand. Breaking them up into smaller, more

manageable functions makes them easier to work with.

4. Use the Logger service for debugging: The Logger service allows

you to log messages to the Execution transcript, which can help you

diagnose and fix problems in your code.

5. Use version control: Version control allows you to track changes to

your code over time and revert to earlier versions if necessary. This

can be especially useful when working on large projects with multiple

collaborators.

6. Test your code thoroughly: Test your code in a variety of scenarios

to make sure it works as expected. This includes testing for edge cases

and unexpected inputs.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

34

Following these best practices can help you write clean, maintainable, and

reliable code with Google Apps Script.

Tips for writing efficient and effective code

Here are some tips for writing efficient and effective code with Google Apps

Script:

1. Use built-in methods and functions: Google Apps Script provides a

number of built-in methods and functions that are optimized for

performance. Whenever possible, use these instead of writing your

own custom code.

2. Minimize API calls: Google Apps Script can interact with many

different Google APIs, but each API call comes with some overhead. To

minimize this overhead, try to make as few API calls as possible. For

example, if you need to retrieve data from a spreadsheet, retrieve all

of the data at once rather than making individual API calls for each

cell.

3. Avoid unnecessary loops: Loops can be slow, especially when

working with large data sets. Whenever possible, try to use built-in

functions and methods to manipulate data instead of writing your own

loops.

4. Use efficient data structures: Choosing the right data structure can

have a big impact on performance. For example, using an object

instead of an array can be more efficient for lookups and searching.

5. Write code that is easy to read and understand: Code that is easy

to read and understand is also more likely to be efficient. This is

because it's easier to spot inefficiencies and potential optimizations

when the code is easy to understand.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

35

By following these tips, you can write code that is both efficient and effective

with Google Apps Script.

Strategies for testing and debugging

Here are some strategies for testing and debugging your code with Google

Apps Script:

1. Use the Logger service: The Logger service allows you to log

messages to the Execution transcript, which can be viewed in the

Script Editor. This can be a useful tool for debugging your code and

figuring out where things are going wrong.

2. Use breakpoints: You can add breakpoints to your code by clicking

on the left margin of the Script Editor. This will cause the script to

pause execution at that point, allowing you to inspect variables and

step through the code line-by-line.

3. Use try/catch blocks: If you are writing code that could potentially

throw an error, use try/catch blocks to catch and handle the error. This

can help you identify and fix problems before they cause your script to

fail.

4. Write unit tests: Unit tests are small, isolated tests that verify that a

specific piece of code is working correctly. By writing unit tests for your

code, you can catch problems early and ensure that changes to your

code don't introduce new bugs.

5. Test in a variety of scenarios: Test your code in a variety of

scenarios to make sure it works as expected. This includes testing for

edge cases and unexpected inputs.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

36

By following these strategies, you can catch and fix errors in your code

before they cause problems and ensure that your code is working as

expected.

Recommendations for documentation and version control

Here are some recommendations for documentation and version control

when working with Google Apps Script:

1. Use comments: Use comments in your code to explain what each

function or section of code does. This will make it easier for others

(and your future self) to understand your code and make changes as

needed.

2. Use descriptive function names: Use descriptive names for your

functions that explain what they do. This will also make your code

easier to understand and work with.

3. Use version control: Use version control software (such as Git) to

track changes to your code over time. This will allow you to roll back to

previous versions of your code if needed, and make it easier to

collaborate with others.

4. Document your functions: Document each function in your code,

including its purpose, input parameters, return value, and any side

effects. This will make it easier for others to understand and use your

code.

5. Use a README file: Create a README file for your project that

explains how to set it up and use it. This will make it easier for others

to get started with your code.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

37

By following these recommendations, you can ensure that your code is

well-documented, version-controlled, and easy to work with, making it

easier for you and others to maintain and build upon it over time.

Conclusion Google Apps Script

In conclusion, Google Apps Script is a powerful tool that allows you to

automate tasks and build custom applications using Google services such as

Sheets, Forms, and Drive. With Apps Script, you can write code in JavaScript

that interacts with these services, allowing you to create custom functions,

build web applications, and more.

Using best practices such as efficient coding, testing and debugging

strategies, documentation, and version control, you can ensure that your

Apps Script projects are well-organized, easy to maintain, and scalable.

Apps Script provides a convenient way to extend and automate your Google

Workspace experience, and with its robust set of features and integrations, it

can help you streamline your workflows and increase your productivity.

Whether you're a business user or a developer, Google Apps Script has the

potential to transform the way you work with Google services.

Recap of key points

Here is a recap of some of the key points covered on Google Apps Script:

● Google Apps Script is a scripting language based on JavaScript that

allows you to automate tasks and build custom applications using

Google services such as Sheets, Forms, and Drive.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

38

● Benefits of using Apps Script include improved productivity,

streamlined workflows, and customized applications tailored to your

specific needs.

● To get started with Apps Script, you need a Google account and can

enable it through the Script Editor within Google Sheets or other

Google apps.

● The Script Editor provides a code editor interface for writing, testing,

and debugging your code.

● Best practices for writing efficient and effective code include using

comments and descriptive function names, documenting your

functions, and using version control software.

● Advanced topics such as working with APIs, creating user interfaces,

and handling errors and exceptions can help you take your Apps Script

skills to the next level.

● Apps Script can integrate with other Google services and external APIs

to help you build more complex applications.

● Tips for testing and debugging your code include using the Logger

service, the debugger, and the Execution Transcript.

● Documentation and version control can help you organize and maintain

your code over time.

By following these key points and best practices, you can use Google Apps

Script to automate tasks, build custom applications, and streamline your

workflows within the Google ecosystem.

Resources for learning more about Google Apps Script

There are several resources available for learning more about Google Apps

Script. Some of the most helpful resources include:

Laurence Svekis https://basescripts.com/

https://basescripts.com/

39

1. Google Developers website - The Google Developers website offers

extensive documentation and tutorials on Google Apps Script. This is a

great place to start if you're new to the platform or need a refresher

on a specific topic.

2. Apps Script Community - The Apps Script Community is a forum

where you can ask questions, share ideas, and get help from other

developers who use Apps Script. This is a great resource if you're

stuck on a particular problem or looking for advice on a specific

project.

3. Apps Script YouTube Channel - The Apps Script YouTube Channel

offers a variety of video tutorials and presentations on different

aspects of Apps Script. This is a great resource if you prefer visual

learning.

4. Apps Script G+ Community - The Apps Script G+ Community is a

Google+ group where developers can share code snippets, ask

questions, and collaborate on Apps Script projects.

5. Apps Script Office Hours - Apps Script Office Hours is a weekly

YouTube live stream where developers can ask questions and get help

with their Apps Script projects.

6. Udemy Courses - Udemy offers a number of online courses on

Google Apps Script, ranging from beginner to advanced levels.

By using these resources, you can deepen your knowledge of Google Apps

Script and become more proficient in building custom applications and

automating tasks within the Google ecosystem.

Sample code Google Apps Script and AI

Laurence Svekis https://basescripts.com/

https://basescripts.com/

40

Here is an example of how you can use Google Apps Script and AI to create

an email classification tool:

1. Start by creating a new Google Sheet with the following columns:

"Sender", "Subject", "Message", and "Label".

2. Open the script editor by clicking on "Tools" > "Script editor".

3. In the script editor, write a function that uses Natural Language

Processing (NLP) to analyze the message content and classify the

email based on its content. You can use the Google Cloud Natural

Language API for this.

4. Use GmailApp service to retrieve the emails from your Gmail account

and loop through each email to classify it based on its content.

5. Update the "Label" column in the Google Sheet with the classification

results.

6. You can also create a trigger to automate this process to run on a

regular schedule.

With this script, you can automatically classify your incoming emails based

on their content, which can save you time and help you stay organized.

Note that this is just one example of how you can use Google Apps Script

and AI together. There are many other ways to use these tools to automate

and optimize your workflows.

Here is a sample code that demonstrates how you can use Google Apps

Script and AI to classify your emails based on their content:

function classifyEmails() {

// Get the Gmail threads that match a certain search query

Laurence Svekis https://basescripts.com/

https://basescripts.com/

41

var threads = GmailApp.search('label:inbox is:unread');

// Loop through each thread

for (var i = 0; i < threads.length; i++) {

var thread = threads[i];

var messages = thread.getMessages();

// Loop through each message in the thread

for (var j = 0; j < messages.length; j++) {

var message = messages[j];

// Extract the sender, subject, and message content

var sender = message.getFrom();

var subject = message.getSubject();

var messageText = message.getPlainBody();

// Classify the message using Google Cloud Natural

Language API

var label = classifyMessage(messageText);

// Update the label column in the Google Sheet

updateLabel(sender, subject, messageText, label);

// Mark the email as read

message.markRead();

}

}

}

Laurence Svekis https://basescripts.com/

https://basescripts.com/

42

function classifyMessage(messageText) {

// Call the Google Cloud Natural Language API to analyze the

message content

var document = LanguageApp.createDocument(messageText);

var entities = document.getEntities();

// Classify the message based on the entities detected

if (entities.length > 0) {

var entityType = entities[0].getType();

if (entityType == "PERSON") {

return "Personal";

} else if (entityType == "ORGANIZATION") {

return "Work";

}

}

// If no entities were detected, classify the message as

"Other"

return "Other";

}

function updateLabel(sender, subject, message, label) {

// Get the active sheet and the last row

var sheet = SpreadsheetApp.getActiveSheet();

var lastRow = sheet.getLastRow();

Laurence Svekis https://basescripts.com/

https://basescripts.com/

43

// Insert a new row with the sender, subject, message, and

label

sheet.insertRowAfter(lastRow);

sheet.getRange(lastRow+1, 1).setValue(sender);

sheet.getRange(lastRow+1, 2).setValue(subject);

sheet.getRange(lastRow+1, 3).setValue(message);

sheet.getRange(lastRow+1, 4).setValue(label);

}

This code uses the GmailApp service to retrieve the emails from your Gmail

account, the LanguageApp service to call the Google Cloud Natural Language

API to analyze the message content, and the SpreadsheetApp service to

update the label column in the Google Sheet. Note that you will need to

enable the Google Cloud Natural Language API and set up the credentials in

your Google Apps Script project before you can use it in your code.

Laurence Svekis https://basescripts.com/

https://basescripts.com/

