
Google Sheets Formulas

Capitalize the first letter of each word in a given string 1
Factorial of a given number 3
Extract the domain name from a given URL 5
String to title case 7
Calculate the sum of the even numbers in a range 10
Count the number of occurrences of a given substring in a string 12
Convert a number to its Roman numeral equivalent 15
Return the last number of characters of a string 18
Compound Interest 20

Capitalize the first letter of each word in a
given string

function CAPITALIZE_WORDS(str) {

const words = str.split(' ');

for(let i=0;i<words.length;i++){

words[i] = words[i].charAt(0).toUpperCase() +

words[i].slice(1).toLowerCase();

}

return words.join(' ');

}

The given code defines a function called CAPITALIZE_WORDS that takes a
string str as an argument. The purpose of the function is to capitalize the
first letter of each word in the given string and convert the rest of the letters
to lowercase. The function follows these steps:

Laurence Svekis https://basescripts.com/
1

https://basescripts.com/

1. It starts by splitting the input string str into an array of words using
the space (' ') as the delimiter. The resulting array is stored in the
variable words.

2. It then iterates over each word in the words array using a for loop.
3. Inside the loop, it capitalizes the first letter of each word by accessing
the first character using charAt(0), converting it to uppercase using
the toUpperCase() method, and then concatenating it with the rest of
the word. The rest of the word is obtained by slicing the word from the
second character onwards and converting it to lowercase using the
toLowerCase() method. The modified word is then assigned back to
the words array at the same index.

4. Once all the words have been processed, the function joins the
modified words back into a single string using the space (' ') as the
delimiter, and returns the resulting capitalized string.

In summary, the CAPITALIZE_WORDS function takes a string, capitalizes the
first letter of each word, converts the remaining letters to lowercase, and
returns the modified string.

Input Output

hello world Hello World

how are you How Are You

this is a tEst This Is A Test

JavaScript is awesome Javascript Is Awesome

Laurence Svekis https://basescripts.com/
2

https://basescripts.com/

Factorial of a given number
function FACTORIAL(n){

if(n===0 || n===1){

return 1;

}else{

return n * FACTORIAL(n-1);

}

}

The given code defines a recursive function called FACTORIAL that calculates
the factorial of a given number n. The factorial of a non-negative integer n,
denoted by n!, is the product of all positive integers less than or equal to n.
The function follows these steps:

1. The function starts with a base case. It checks if the input n is equal to
0 or 1 using the strict equality operator ===. If n is either 0 or 1, it
means we have reached the smallest possible factorial value, which is
1. In this case, the function returns 1.

2. If the input n is not 0 or 1, it means we need to calculate the factorial
for a larger number. In this case, the function enters the else block.

3. Inside the else block, the function recursively calls itself with the
argument n-1. This is done to calculate the factorial of the number
n-1. The result of the recursive call is multiplied by n, which gives the
factorial of n. The multiplication is performed using the * operator.

4. The recursive call continues until the base case is reached, at which
point the function starts returning the factorial values upwards. Each
recursive call multiplies the current number n with the factorial of n-1,
until the original n is reached.

5. Finally, the calculated factorial value is returned as the result of the
function.

To understand how this function works, let's consider an example:
scss
Copy code
FACTORIAL(5)
Since 5 is not equal to 0 or 1, the function enters the else block and makes a
recursive call to FACTORIAL(4).

Laurence Svekis https://basescripts.com/
3

https://basescripts.com/

Similarly, FACTORIAL(4) makes a recursive call to FACTORIAL(3), and so on,
until FACTORIAL(1) is reached.
At FACTORIAL(1), the base case is triggered, and the function returns 1.
Now, the function starts returning the factorial values upwards:

● FACTORIAL(1) returns 1 to FACTORIAL(2), which multiplies it by 2 and
returns 2.

● FACTORIAL(2) returns 2 to FACTORIAL(3), which multiplies it by 3 and
returns 6.

● FACTORIAL(3) returns 6 to FACTORIAL(4), which multiplies it by 4 and
returns 24.

● FACTORIAL(4) returns 24 to FACTORIAL(5), which multiplies it by 5
and returns the final result 120.

So, FACTORIAL(5) returns 120, which is the factorial of 5.
In summary, the FACTORIAL function uses recursion to calculate the factorial
of a given number n by repeatedly multiplying the current number with the
factorial of the preceding number until it reaches the base case.

Laurence Svekis https://basescripts.com/
4

https://basescripts.com/

Input Output
0 1

1 1

2 2

3 6

4 24

5 120

6 720

7 5040

Extract the domain name from a given URL

function GET_DOMAIN(url){

let domain = '';

let matches =

url.match(/^https?\:\/\/([^\/?#]+)(?:[\/?#]|$)/i);

if(matches && matches[1]){

domain = matches[1];

}

return domain;

}

Laurence Svekis https://basescripts.com/
5

https://basescripts.com/

The given code defines a function called GET_DOMAIN that extracts and
returns the domain name from a given URL. The domain name represents
the network location of a website. The function follows these steps:

1. It starts by declaring and initializing two variables: domain and
matches. The domain variable will store the extracted domain name,
while the matches variable will be used to store the result of the
regular expression match.

2. The regular expression pattern used in the match method is
/^https?\:\/\/([^\/?#]+)(?:[\/?#]|$)/i. Let's break down this pattern:

● ^ asserts the start of the string.
● https? matches either "http" or "https".
● \:\/\/ matches the literal characters "://".
● ([^\/?#]+) captures one or more characters that are not "/",
"?", or "#" as a group.

● (?:[\/?#]|$) matches either "/", "?", or "#" non-capturing group
or the end of the string.

● /i specifies that the match should be case-insensitive.
3. This regular expression pattern is used to match and capture the
domain name portion of the URL.

4. The match method is called on the url string, passing the regular
expression pattern as an argument. The method attempts to find a
match for the pattern in the url string.

5. The result of the match method is stored in the matches variable. If a
match is found, the matches variable will be an array containing the
entire matched string as the first element, followed by the captured
groups.

6. The if statement checks if matches is truthy (not null or undefined)
and if matches[1] exists. Since we are interested in the captured
group at index 1 (the domain name), the condition checks if the
element at index 1 of matches exists.

7. If the condition in the if statement is true, it means a match was
found, and the domain name is extracted from matches[1]. The
domain name is assigned to the domain variable.

8. Finally, the domain variable, which either contains the extracted
domain name or an empty string, is returned as the result of the
function.

To understand how this function works, let's consider an example:
rust

Laurence Svekis https://basescripts.com/
6

https://basescripts.com/

Copy code
GET_DOMAIN('https://www.example.com/path/to/page.html')
The function will extract the domain name from the given URL and return it.
In this case, the regular expression pattern matches the "https://" portion of
the URL and captures "www.example.com" as the domain name.
The extracted domain name is then assigned to the domain variable, and the
function returns "www.example.com" as the result.
In summary, the GET_DOMAIN function extracts and returns the domain
name from a given URL by using a regular expression match to capture the
relevant portion of the URL.

Input (url) Output

https://www.example.com www.example.com

http://example.com/index.html example.com

https://subdomain.example.org/p
ath?query=string subdomain.example.org

http://localhost:3000/ localhost:3000

String to title case
function TITLE_CASE(str){

const words = str.toLowerCase().split(' ');

words.forEach((ele,ind) =>{

words[ind] = ele.charAt(0).toUpperCase()+ele.slice(1);

})

return words.join(' ');

}

Laurence Svekis https://basescripts.com/
7

http://www.example.com/
http://www.example.com/
https://www.example.com/
http://www.example.com
http://example.com/index.html
http://example.com
https://subdomain.example.org/path?query=string
https://subdomain.example.org/path?query=string
http://subdomain.example.org
http://localhost:3000/
https://basescripts.com/

The given code defines a function called TITLE_CASE that converts a given
string str into title case. Title case is a writing style where the first letter of
each word is capitalized, and the rest of the letters are in lowercase. The
function follows these steps:

1. It starts by declaring a constant variable words and assigns it the
result of manipulating the input string str. The string is first converted
to lowercase using the toLowerCase() method to ensure consistency.
Then, the split() method is used to split the string into an array of
words using the space (' ') as the delimiter. The resulting array of
words is stored in the words variable.

2. The forEach() method is called on the words array, which iterates over
each element (word) of the array. For each word, the function
executes the provided callback function.

3. Inside the callback function, the current word is accessed using the ele
parameter. The index of the current word in the array is accessed
using the ind parameter.

4. The callback function capitalizes the first letter of each word by using
the charAt(0) method to access the first character of the word,
converting it to uppercase using the toUpperCase() method, and then
concatenating it with the rest of the word. The rest of the word is
obtained by slicing the word from the second character onwards using
the slice(1) method. The modified word is then assigned back to the
words array at the same index (ind).

5. After iterating through all the words in the words array and modifying
them to title case, the function returns the modified words joined back

Laurence Svekis https://basescripts.com/
8

https://basescripts.com/

into a single string using the space (' ') as the delimiter. This is done
by calling the join(' ') method on the words array.

To understand how this function works, let's consider an example:
scss
Copy code
TITLE_CASE('hello world')
The input string is 'hello world'.

1. The toLowerCase() method is applied to the input string, resulting in
'hello world'.

2. The split(' ') method is applied to the lowercase string, resulting in the
words array: ['hello', 'world'].

3. The forEach() method iterates over each word in the words array.
● For the first iteration, the word is 'hello' at index 0.

● The first character 'h' is capitalized using
charAt(0).toUpperCase(), resulting in 'H'.

● The rest of the word 'ello' is obtained using slice(1).
● The modified word 'Hello' is assigned back to the words
array at index 0.

● For the second iteration, the word is 'world' at index 1.
● The first character 'w' is capitalized using
charAt(0).toUpperCase(), resulting in 'W'.

● The rest of the word 'orld' is obtained using slice(1).
● The modified word 'World' is assigned back to the words
array at index 1.

4. After modifying all the words, the join(' ') method is called on the
words array, resulting in the string 'Hello World'.

5. The modified string 'Hello World' is returned as the result of the
function.

In summary, the TITLE_CASE function converts a given string into title case
by converting the string to lowercase, splitting it into an array of words,
capitalizing the first letter of each word, and then joining the modified words
back into a single string.

Input Output

hello world Hello World

Laurence Svekis https://basescripts.com/
9

https://basescripts.com/

THE QUICK BROWN FOX The Quick Brown Fox

cAn YoU cOnVeRt ThIs? Can You Convert This?

tEStIng tiTle caSE Testing Title Case

ALL CAPS All Caps

Calculate the sum of the even numbers in a
range

function SUM_OF_EVEN(first,second) {

let sum = 0;

for (let i = first; i < second+1; i++) {

if (i % 2 === 0) {

sum += i;

}

}

return sum;

}

Laurence Svekis https://basescripts.com/
10

https://basescripts.com/

The given code defines a function called SUM_OF_EVEN that calculates the
sum of all even numbers within a given range. The function takes two
parameters, first and second, representing the range of numbers (inclusive)
between which the sum of even numbers is to be calculated. The function
follows these steps:

1. It starts by declaring and initializing a variable called sum to 0. This
variable will be used to store the cumulative sum of even numbers.

2. The function enters a for loop, starting from the value of first and
iterating until second+1. The loop variable i represents each number
within the range, including both first and second.

3. Inside the loop, an if statement is used to check if the current value of
i is even. The condition i % 2 === 0 checks if i is divisible by 2 with no
remainder, which indicates that i is an even number.

4. If the condition is true (i.e., i is even), the value of i is added to the
sum variable using the += operator. This accumulates the even
numbers and updates the sum.

5. Once the loop has iterated through all the numbers within the given
range, the sum variable holds the total sum of even numbers.

6. Finally, the function returns the value of sum as the result.
To understand how this function works, let's consider an example:
scss
Copy code
SUM_OF_EVEN(1, 10)
The function will calculate the sum of even numbers between 1 and 10
(inclusive).
The for loop starts with i = 1 and iterates until i reaches 10+1, which means
it iterates from 1 to 11 (inclusive).
Inside the loop:

● At i = 1, the condition i % 2 === 0 is false since 1 is not an even
number, so nothing happens.

● At i = 2, the condition is true, and 2 is added to the current value of
sum, which is 0. So, sum becomes 2.

● At i = 3, the condition is false, so nothing happens.
● At i = 4, the condition is true, and 4 is added to sum, resulting in sum
becoming 6.

Laurence Svekis https://basescripts.com/
11

https://basescripts.com/

● This process continues until i = 10, where 10 is added to sum, making
sum equal to 30.

After the loop finishes, the function returns 30 as the sum of all even
numbers between 1 and 10 (inclusive).
In summary, the SUM_OF_EVEN function calculates the sum of even
numbers within a given range by iterating through each number in the
range, checking if it's even, and adding it to the cumulative sum. The final
sum is returned as the result of the function.

Start End Output

1 2 2

1 10 30

2 6 12

3 5 4

Count the number of occurrences of a given
substring in a string

function COUNT_SUBSTR(str,sbStr){

let count = 0;

let pos = str.indexOf(sbStr);

Laurence Svekis https://basescripts.com/
12

https://basescripts.com/

while (pos !== -1){

count++;

pos = str.indexOf(sbStr,pos+1);

}

return count;

}

The provided code defines a function called COUNT_SUBSTR that takes two
parameters: str and sbStr. The purpose of this function is to count the
number of occurrences of a substring (sbStr) within a given string (str).
Here is a detailed explanation of how the function works:

1. let count = 0; creates a variable called count and initializes it to 0. This
variable will be used to keep track of the number of occurrences of
sbStr in str.

2. let pos = str.indexOf(sbStr); initializes a variable called pos with the
index of the first occurrence of sbStr in str. The indexOf() method
returns the index of the first occurrence of the specified substring or -1
if it is not found.

3. The while loop is used to iterate over str and find all occurrences of
sbStr. It continues as long as pos is not equal to -1, which means that
there are still more occurrences of sbStr to be found.

4. Inside the while loop, count++ increments the count variable by 1,
indicating that another occurrence of sbStr has been found.

5. pos = str.indexOf(sbStr, pos + 1); updates the value of pos to the
index of the next occurrence of sbStr in str, starting from the position
immediately after the previous occurrence. This ensures that the loop
continues to find all occurrences of sbStr and doesn't get stuck in an
infinite loop.

6. Once there are no more occurrences of sbStr in str, the indexOf()
method returns -1, causing the while loop to exit.

7. Finally, the function returns the value of count, which represents the
total number of occurrences of sbStr in str.

In summary, this function uses a loop and the indexOf() method to iterate
over a string and count the number of occurrences of a specific substring
within it.

Laurence Svekis https://basescripts.com/
13

https://basescripts.com/

str substr output

hello world l 3

banana a 3

mississippi ss 2

javascript script 1

apple banana 0

Laurence Svekis https://basescripts.com/
14

https://basescripts.com/

Convert a number to its Roman numeral
equivalent

function TO_ROMAN(num){

if(typeof num !== 'number') return NaN;

let roman = '';

const romanValues = {

Laurence Svekis https://basescripts.com/
15

https://basescripts.com/

M: 1000,

CM: 900,

D: 500,

CD: 400,

C: 100,

XC: 90,

L: 50,

XL: 40,

X: 10,

IX: 9,

V: 5,

IV: 4,

I: 1

};

for(let key in romanValues){

while(num >= romanValues[key]){

roman += key;

num -= romanValues[key];

}

}

return roman;

}

The provided code defines a function called TO_ROMAN that takes a
parameter num and converts it to a Roman numeral representation. Here is
a detailed explanation of how the function works:

1. if(typeof num !== 'number') return NaN; checks if the num parameter
is not a number. If it is not a number, the function immediately returns

Laurence Svekis https://basescripts.com/
16

https://basescripts.com/

NaN (Not a Number). This is a basic input validation step to ensure
that the input is a valid number.

2. let roman = ''; creates an empty string variable called roman, which
will store the Roman numeral representation of the input number.

3. const romanValues = {...}; declares a constant object called
romanValues that maps Roman numerals to their corresponding
decimal values. This mapping is used to convert the input number to
its Roman numeral representation. The object stores the Roman
numerals as keys and their corresponding decimal values as values.

4. The for...in loop iterates over each key in the romanValues object.
5. Inside the loop, the while loop is used to check if the input number
(num) is greater than or equal to the current Roman numeral's decimal
value (romanValues[key]).

6. If the condition is true, it means that the current Roman numeral
should be added to the roman string. So, roman += key; concatenates
the current Roman numeral (key) to the roman string.

7. Additionally, num -= romanValues[key]; subtracts the decimal value of
the current Roman numeral from the num variable. This ensures that
we keep track of the remaining value that needs to be converted into
Roman numerals.

8. The loop continues until the num variable is less than the decimal
value of the current Roman numeral, at which point it moves to the
next Roman numeral in the romanValues object.

9. Once all the Roman numerals have been processed and appended to
the roman string, the function exits the loop.

10.Finally, the function returns the roman string, which represents the
Roman numeral representation of the input number.

In summary, this function converts a decimal number into its Roman
numeral representation by iteratively subtracting the decimal values of
Roman numerals from the input number and appending the corresponding
Roman numerals to a string.

Input (num)

1 I

3 III

4 IV

Laurence Svekis https://basescripts.com/
17

https://basescripts.com/

9 IX

10 X

14 XIV

50 L

44 XLIV

2023 MMXXIII

33 XXXIII

Return the last number of characters of a
string

function LAST_VALS(str,num){

if(num >= str.length){

return str;

}

return str.slice(str.length - num);

Laurence Svekis https://basescripts.com/
18

https://basescripts.com/

}

The provided code defines a function called LAST_VALS that takes two
parameters: str and num. The function returns the last num characters from
the str string. Here is a detailed explanation of how the function works:

1. The function begins with an if statement: if(num >= str.length). This
condition checks if the value of num is greater than or equal to the
length of the str string. If this condition is true, it means that the
function should return the entire str string because there are not
enough characters to extract the last num characters. In this case, the
function returns the str string as it is.

2. If the condition in the if statement is false, the function proceeds to
the next line: return str.slice(str.length - num);. The slice() method is
used to extract a portion of the str string.

3. The argument passed to slice() is str.length - num. This calculates the
starting index from which the last num characters should be extracted.
By subtracting num from str.length, we get the starting index of the
desired portion.

4. When slice() is called with a single argument, it extracts characters
starting from the specified index until the end of the string. Therefore,
str.slice(str.length - num) returns the last num characters from the str
string.

5. Finally, the extracted portion of the string is returned by the function.
In summary, the LAST_VALS function extracts the last num characters from
the str string and returns them. If the value of num is greater than or equal
to the length of the string, the entire str string is returned.

str n Output

hello 3 llo

world 2 ld

foo bar 2 ar

test 2 st

Laurence Svekis https://basescripts.com/
19

https://basescripts.com/

Compound Interest

code for the COMPOUND_INTEREST function and explain how it works.

function COMPOUND_INTEREST(principal, rate, time) {
var interest = principal * (Math.pow((1 + (rate / 100)), time)

- 1);
return interest.toFixed(2);

}

This code defines a function called COMPOUND_INTEREST that takes three
parameters: principal, rate, and time. The function calculates the compound
interest based on these parameters and returns the result rounded to two
decimal places.
Let's go through the code step by step:

1. var interest = principal * (Math.pow((1 + (rate / 100)), time) - 1);
This line calculates the compound interest using the formula:
interest = principal * (Math.pow((1 + (rate / 100)), time)
- 1);

● principal: The initial amount of money or investment.
● rate: The annual interest rate (percentage).
● time: The time period (in years) for which the interest is
compounded.

2. The formula (1 + (rate / 100)) calculates the multiplication factor for
each time period based on the interest rate. The Math.pow() function

Laurence Svekis https://basescripts.com/
20

https://basescripts.com/

is used to raise this factor to the power of time, representing the
number of compounding periods. Subtracting 1 from this value
accounts for the initial principal amount.
The result of this calculation is assigned to the interest variable.

3. return interest.toFixed(2);
This line returns the calculated interest value rounded to two decimal
places using the toFixed() method. The toFixed() method converts the
number into a string representation with the specified number of
decimal places.

Now, let's consider an example table of data from Google Sheets:

Principal Rate Time Compound Interest

1000 5% 1

5000 3.5% 3

2500 7% 5

10000 2% 10

3000 4.5% 2

To calculate the compound interest for each row, you can call the
COMPOUND_INTEREST function for each row's Principal, Rate, and Time
values.
For example, to calculate the compound interest for the first row (Principal:
1000, Rate: 5%, Time: 1), you would call the function like this:
COMPOUND_INTEREST(1000, 5, 1);
The function will return the calculated compound interest value rounded to
two decimal places, which you can then fill into the "Compound Interest"
column in the corresponding row of the table.
You can repeat this process for each row to calculate the compound interest
for the entire table.

function COMPOUND_INTEREST(principal, rate, time) {

Laurence Svekis https://basescripts.com/
21

https://basescripts.com/

var interest = principal * (Math.pow((1 + (rate / 100)), time)

- 1);

return interest.toFixed(2);

}

Principal Rate Time Compound Interest

1000 5 1 50.00

5000 3.5 3 543.59

2500 7 5 1006.38

10000 2 10 2189.94

3000 4.5 2 276.07

Laurence Svekis https://basescripts.com/
22

https://basescripts.com/

