
Node JS EventLoop function explained
The event loop is a crucial component of Node.js that allows it to
handle asynchronous operations efficiently. Let me explain how it
works.

In Node.js, the event loop is a mechanism that enables
non-blocking I/O operations, such as reading from a file, making
network requests, or querying databases, without blocking the
execution of other code. This allows Node.js to handle a large
number of concurrent connections efficiently.

The event loop follows a continuous cycle, repeatedly checking for
pending events and executing their associated callbacks. Here's a
simplified overview of the event loop process:

1. Event Registration: When you perform an asynchronous
operation in Node.js, such as reading a file, you register an
event with a callback function. This callback function will be
executed once the operation is completed or when an error
occurs.

2. Event Queue: Completed events, along with their
corresponding callbacks, are placed in a queue called the
"event queue" or "callback queue." The event loop
continuously checks this queue for pending events.

3. Event Loop Iteration: The event loop begins each iteration
by checking if there are any pending events in the event
queue.

4. Event Handling: If there is an event in the queue, the
event loop takes it out and executes its associated callback
function. This allows the asynchronous operation to

Laurence Svekis https://basescripts.com/

1

https://basescripts.com/


complete and triggers the corresponding code to continue
executing.

5. Blocking vs. Non-blocking: While the event loop is waiting
for an event, it can handle other code that is not dependent
on the completion of any asynchronous operation. This
ensures that other tasks can be executed concurrently,
making Node.js highly efficient and scalable.

6. Timers: In addition to asynchronous I/O operations, the
event loop also handles timers. It checks for expired timers
and executes their associated callback functions.

This continuous cycle of checking the event queue, handling
events, and executing callbacks is what allows Node.js to handle
asynchronous operations effectively. By avoiding blocking
operations and leveraging callbacks, Node.js can handle multiple
connections and requests concurrently, making it suitable for
building scalable and high-performance applications.

Keep in mind that this is a simplified explanation of the event
loop in Node.js. The actual implementation involves more
intricate details, such as different phases (e.g., timers, I/O
callbacks, idle, etc.) and the microtask queue for handling
promises. However, this overview should give you a basic
understanding of how the event loop functions in Node.js.

Laurence Svekis https://basescripts.com/

2

https://basescripts.com/


simple example of how the event loop works in Node.js:

// Registering an asynchronous operation (setTimeout) with a
callback
setTimeout(() => {
console.log('Asynchronous operation completed');
}, 2000);

// Synchronous operation
console.log('Synchronous operation');

// Event loop starts
console.log('Event loop started');

// Event loop iteration
// Checks if there are any pending events in the event queue

// Since the setTimeout operation was registered earlier, it is not
yet completed
// The event loop moves on to the next iteration

Laurence Svekis https://basescripts.com/

3

https://basescripts.com/


// Event loop iteration
// Checks if there are any pending events in the event queue

// The setTimeout operation's time has elapsed (2 seconds), so it
is completed
// The event loop takes the callback function associated with the
setTimeout operation and executes it

// Output: Asynchronous operation completed
console.log('Event loop iteration completed');

// The event loop moves on to the next iteration

// Event loop iteration
// Checks if there are any pending events in the event queue

// Since there are no pending events, the event loop moves on to
the next iteration

// Event loop iteration
// Checks if there are any pending events in the event queue

// Again, there are no pending events, so the event loop moves
on to the next iteration

// ...and the cycle continues until there are no more pending
events

// Output: Synchronous operation
// Output: Event loop started
// Output: Event loop iteration completed

Laurence Svekis https://basescripts.com/

4

https://basescripts.com/


In this example, we first register an asynchronous operation
(setTimeout) with a callback function that logs a message after a
delay of 2 seconds. Then, we execute a synchronous operation
that logs a message immediately. After that, we start the event
loop and it begins iterating.

During the first iteration, the event loop checks if there are any
pending events in the event queue. Since the setTimeout
operation is not yet completed, the event loop moves on to the
next iteration. In the second iteration, the event loop finds the
completed setTimeout operation in the event queue and executes
its associated callback, which logs the message "Asynchronous
operation completed" to the console.

The event loop continues iterating, checking for pending events.
Since there are no more pending events, the event loop moves on
to the next iteration and eventually completes.

The output of this code will be:

Synchronous operation
Event loop started
Asynchronous operation completed
Event loop iteration completed

This example demonstrates how the event loop allows
non-blocking

Laurence Svekis https://basescripts.com/

5

https://basescripts.com/

