
NodeJS Callback explained with Code Snippet Examples

In Node.js, callbacks are a common pattern used to handle
asynchronous operations. A callback is a function that is passed
as an argument to another function and gets invoked once the
asynchronous operation completes or encounters an error. Let's
dive into a detailed explanation with a coding example:

// Asynchronous function that takes a callback

function fetchData(callback) {

// Simulating an asynchronous operation (e.g., fetching data

from a database or making an API request)

setTimeout(() => {

const data = 'This is the fetched data';

const error = null;

callback(error, data);

}, 2000);

}

// Callback function to handle the fetched data

function handleData(error, data) {

if (error) {

console.error('Error:', error);

} else {

Laurence Svekis https://basescripts.com/

1

https://basescripts.com/


console.log('Data:', data);

}

}

// Call the asynchronous function with the callback

fetchData(handleData);

In this example, we have an fetchData function that simulates an
asynchronous operation using setTimeout. After a delay of 2
seconds, it invokes the callback function with two arguments:
error and data.
The handleData function is the callback function we pass to
fetchData. It takes two parameters: error and data. Inside
handleData, we can perform actions based on whether an error
occurred or the data was successfully fetched.
Finally, we call the fetchData function and pass the handleData
callback as an argument. When the asynchronous operation
completes, the fetchData function invokes the handleData
callback, passing the error (if any) and the fetched data as
arguments.
If an error occurs during the asynchronous operation, the
handleData callback prints an error message to the console.
Otherwise, it logs the fetched data.
This pattern allows us to handle the result of an asynchronous
operation without blocking the execution of other code. The
callback function acts as a notification mechanism, executing the
appropriate code when the asynchronous operation completes.
Callbacks are a foundational concept in Node.js, but they can lead
to callback hell or the "pyramid of doom" when dealing with

Laurence Svekis https://basescripts.com/

2

https://basescripts.com/


multiple asynchronous operations. To mitigate this issue, there
are alternative patterns like Promises and async/await, which
provide more readable and maintainable code. However,
understanding callbacks is still important as many Node.js
libraries and APIs use them extensively.

Laurence Svekis https://basescripts.com/

3

https://basescripts.com/

