
Google Sheet Formulas

Formula to calculate the average of the values in a given range 1
Concatenate two strings and capitalize the first letter 5
Calculate the factorial of a given number 9
Count the number of occurrences of a given value in a range 12
Calculate the distance between two sets of latitude and longitude
coordinates 15
Check if a given string is a palindrome 19
Age of a person based on their birthdate 23
Convert a number from decimal to binary 26
Random number between two given numbers 28
Sum of the squares of the numbers in a range 31

Formula to calculate the average of the values
in a given range
https://youtu.be/2QJtyU17RJ0

Range Threshold

1, 2, 3, 4, 5, 6,7 3 5

10, 20, 30, 40, 50 25 40

2, 4, 6, 8, 10 5 8

0, 5, 10, 15, 20, 25 200 0

100, 200, 300, 400 200 300

Laurence Svekis https://basescripts.com/

1

https://youtu.be/2QJtyU17RJ0
https://basescripts.com/


The given code defines an Apps Script function called
AVE_Above_Threshold, which takes two parameters: range and
threshold. This function calculates the average of the numbers in
a given range that are above or equal to the specified threshold.
Here's a step-by-step breakdown of what the code does:
1. Initialize two variables, sum and count, to keep track of the
sum of numbers above the threshold and the count of
numbers above the threshold, respectively.

Convert the range parameter into an array of values by
performing the following steps:
a. Remove any leading or trailing whitespace from the range
string using the trim() method.
b. Split the resulting string using a comma as the delimiter to
separate individual values.
2. c. Store the resulting array in the arr variable.
3. Iterate over each element in the arr array using the forEach
method and a callback function that takes a val parameter
representing the current element.

Inside the callback function, convert the val into a number by
performing the following steps:
a. Remove any leading or trailing whitespace from the val string
using the trim() method.
4. b. Parse the resulting string into an integer using the
parseInt() function, and store the result in the num variable.

Check if the num value is greater than or equal to the threshold
value:
a. If the condition is true, increment the count variable by 1 to
keep track of the count of numbers above the threshold.
5. b. Add the num value to the sum variable to accumulate the
sum of numbers above the threshold.

Laurence Svekis https://basescripts.com/

2

https://basescripts.com/


After the iteration is complete, check if the count variable is equal
to zero:
a. If the condition is true, it means there were no numbers above
the threshold, so the function returns 0.
6. b. If the condition is false, calculate the average by dividing
the sum variable by the count variable, and return the
result.

In summary, this function takes a string of comma-separated
values (range) and a threshold value (threshold), and calculates
the average of the numbers in the range that are above or equal
to the threshold. If there are no numbers above the threshold, it
returns 0.

function AVE_Above_Threshold(range,threhold) {

let sum = 0;

let count = 0;

const arr = range.trim().split(',');

arr.forEach(val =>{

Laurence Svekis https://basescripts.com/

3

https://basescripts.com/


let num = parseInt(val.trim());

if(num >= threhold){

count++;

sum += num;

}

})

return count == 0 ? 0 : sum/count;

}

Laurence Svekis https://basescripts.com/

4

https://basescripts.com/


Concatenate two strings and capitalize the
first letter
https://youtu.be/PuMqOR7ambE

function CONCAT_CAP(str1,str2){

const stra = upperMe(str1);

const strb = upperMe(str2);

return stra.concat(strb);

}

function CONCAT_CAP2(str1,str2){

const stra = str1.chatAt(0).toUpperCase();

const concatVal = str1.concat(str2);

let firstLetter = concatVal.charAt(0).toUpperCase();

Laurence Svekis https://basescripts.com/

5

https://youtu.be/PuMqOR7ambE
https://basescripts.com/


let restVals = concatVal.slice(1).toLowerCase();

return firstLetter + restVals;

}

function upperMe(val){

Logger.log(val);

return val.charAt(0).toUpperCase() + val.slice(1).toLowerCase();

}

function test(){

const val = 'laurence';

upperMe(val);

}

str1 str2

hello world HelloWorld

Goodbye cruelty
GoodbyeCruelt
y

python script PythonScript

Java Program JavaProgram

haPPpy feet HapppyFeet

Laurence Svekis https://basescripts.com/

6

https://basescripts.com/


The provided code consists of several functions that manipulate
strings in different ways. Let's break down each function and its
purpose:
1. CONCAT_CAP(str1, str2):

● This function takes two string parameters, str1 and
str2.

● It calls the upperMe function with str1 as an argument
and stores the result in the stra variable.

● It calls the upperMe function with str2 as an argument
and stores the result in the strb variable.

● It returns the concatenation of stra and strb using the
concat method.

2. Overall, this function converts both input strings to
uppercase and then concatenates them.

3. CONCAT_CAP2(str1, str2):
● This function takes two string parameters, str1 and
str2.

● It retrieves the first character of str1 using the charAt
method, converts it to uppercase, and assigns it to the
firstLetter variable.

● It concatenates str1 and str2 using the concat method
and assigns the result to the concatVal variable.

● It retrieves the first character of concatVal, converts it
to uppercase, and assigns it back to the firstLetter
variable.

● It converts the remaining characters of concatVal to
lowercase and assigns them to the restVals variable
using the slice and toLowerCase methods.

● It returns the concatenation of firstLetter and restVals.

Laurence Svekis https://basescripts.com/

7

https://basescripts.com/


4. This function capitalizes the first letter of the resulting
concatenation of str1 and str2 and converts the remaining
characters to lowercase.

5. upperMe(val):
● This function takes a string parameter, val.
● It logs the val to the Logger for debugging purposes.
● It retrieves the first character of val using the charAt
method, converts it to uppercase, and assigns it to the
firstLetter variable.

● It converts the remaining characters of val to lowercase
and assigns them to the restVals variable using the
slice and toLowerCase methods.

● It returns the concatenation of firstLetter and restVals.
6. This function capitalizes the first letter of val and converts
the remaining characters to lowercase.

7. test():
● This function is not used within the provided code and
has no impact on the execution of the other functions.
It logs the value of the val variable (which is set to
'laurence') when called, but it does not return any
value.

In summary, the code provides three functions (CONCAT_CAP,
CONCAT_CAP2, and upperMe) that manipulate strings in various
ways such as converting characters to uppercase or lowercase,
concatenating strings, and capitalizing the first letter. The test()
function is not directly related to the other functions and serves
as a standalone test function.

Laurence Svekis https://basescripts.com/

8

https://basescripts.com/


Calculate the factorial of a given number
https://youtu.be/w_vIDg7OMoc

function FACTORIALVAL(val){

if(val == 0){

return 1;

}else{

Logger.log(val);

return val * FACTORIALVAL(val-1);

}

Laurence Svekis https://basescripts.com/

9

https://youtu.be/w_vIDg7OMoc
https://basescripts.com/


}

function test1(){

let v =4;

Logger.log(FACTORIALVAL(v));

}

The given code consists of two functions: FACTORIALVAL and
test1. Let's break down each function and its purpose:
1. FACTORIALVAL(val):

● This function calculates the factorial value of a given
number val.

● It first checks if the val is equal to 0. If it is, the
function immediately returns 1. This is the base case of
the factorial calculation, as the factorial of 0 is defined
as 1.

● If val is not equal to 0, the function logs the value of
val to the Logger for debugging purposes.

● It then recursively calls the FACTORIALVAL function
with val-1 as the argument and multiplies the result
with val.

● The recursion continues until the base case is reached
(when val becomes 0), at which point the recursion
stops and the function returns the final factorial value.

2. In summary, the FACTORIALVAL function recursively
calculates the factorial of a given number using the formula
n! = n * (n-1)!.

3. test1():

Laurence Svekis https://basescripts.com/

10

https://basescripts.com/


● This function is not directly related to the factorial
calculation. It serves as a test function to showcase the
usage of the FACTORIALVAL function.

● It initializes a variable v with the value 4.
● It logs the result of calling the FACTORIALVAL function
with v as the argument to the Logger.

4. When executed, the test1 function will log the intermediate
values of val during the recursive calculation of the factorial
of 4 to the Logger, as well as the final factorial value.

In summary, the code provides a FACTORIALVAL function that
calculates the factorial value of a given number using recursion,
and a test1 function that demonstrates the usage of the
FACTORIALVAL function by calculating the factorial of 4 and
logging the result.

Input Output

0 1

1 1

2 2

3 6

4 24

5 120

Laurence Svekis https://basescripts.com/

11

https://basescripts.com/


Count the number of occurrences of a given
value in a range
https://youtu.be/36zBPR6349A

The provided code defines an Apps Script function called
COUNT_VAL that counts the occurrences of a specific value within
a given range. Let's break down the code step by step:
1. Initialize a variable count to keep track of the count of
occurrences of the specified value within the range. Set it to
0 initially.

2. Split the range string into an array of values using the split
method. The delimiter used for splitting is a comma (','), as
specified by range.split(',').

3. Iterate over each element (v) in the arr array using the
forEach method and a callback function.

4. Inside the callback function, the code checks if the current
element (v) is equal to the specified value (val) after

Laurence Svekis https://basescripts.com/

12

https://youtu.be/36zBPR6349A
https://basescripts.com/


removing any leading or trailing whitespace from v using the
trim method.

5. If the equality condition (val == v.trim()) is true, it means
the current element matches the specified value. In this
case, increment the count variable by 1.

6. After iterating over all the elements in the array, the function
returns the final value of the count variable, representing
the total count of occurrences of the specified value within
the given range.

In summary, the COUNT_VAL function takes a range (a
comma-separated string of values) and a target value (val). It
iterates through the values in the range, counts the number of
occurrences of the target value, and returns the count.

function COUNT_VAL(range,val){

let count = 0;

const arr = range.split(',');

arr.forEach(v =>{

if(val == v.trim()){

count++;

}

})

return count;

}

range value

Laurence Svekis https://basescripts.com/

13

https://basescripts.com/


1,2,3,4,5,81,2,3,4,5,8 3 2

5,4,3,2,1 5 1

2,2,2,2,2 2 5

1,1,1,1,1 2 0

foo,bar,baz,foo,foo foo 3

Laurence Svekis https://basescripts.com/

14

https://basescripts.com/


Calculate the distance between two sets of
latitude and longitude coordinates
https://youtu.be/cD6pUr_5RtE

The code defines a function called DISTANCE_BETWEEN that
calculates the distance between two geographical coordinates on
the Earth's surface using the Haversine formula. Here's a
step-by-step breakdown of the code:
1. Define a constant earthRadius with a value of 6371,
representing the Earth's radius in kilometers.

2. Calculate the difference in latitude (dLat) and longitude
(dLon) between the two coordinates. These differences are
obtained by subtracting the respective initial coordinates
(lat1 and lon1) from the final coordinates (lat2 and lon2).

3. Convert the differences in latitude and longitude from
degrees to radians by calling the degreesToRadians function
with the respective differences as arguments. The
degreesToRadians function converts degrees to radians using
the formula deg * Math.PI / 180.

4. Use the Haversine formula to calculate the distance between
the two coordinates. The Haversine formula involves several
trigonometric calculations. Here's the breakdown of the

Laurence Svekis https://basescripts.com/

15

https://youtu.be/cD6pUr_5RtE
https://basescripts.com/


formula:
a. Calculate a using the following equation:

5. arduino
6. Copy code
7. a = Math.sin(dLat / 2) * Math.sin(dLat / 2) +
Math.cos(degreesToRadians(lat1)) *
Math.cos(degreesToRadians(lat2)) * Math.sin(dLon / 2) *
Math.sin(dLon / 2);
This equation represents the squared value of the Haversine
function applied to the angular differences. It involves
computing the squares of sine and cosine functions.
b. Calculate c using the following equation:

8. arduino
9. Copy code
10. c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));

The atan2 function calculates the arctangent of the ratio of
two numbers. In this case, it computes the arctangent of the
square root of a divided by the square root of 1 - a. The
result represents the angular distance in radians.
c. Calculate distance by multiplying earthRadius with c. This
step converts the angular distance to a physical distance in
kilometers.

11. Finally, return the calculated distance value as the result
of the function.

Additionally, the code includes a helper function called
degreesToRadians, which converts degrees to radians by
multiplying the input value (deg) by Math.PI / 180. This function
is used to convert the latitude and longitude differences from
degrees to radians.
In summary, the DISTANCE_BETWEEN function calculates the
distance (in kilometers) between two sets of latitude and

Laurence Svekis https://basescripts.com/

16

https://basescripts.com/


longitude coordinates using the Haversine formula. It leverages
the degreesToRadians helper function to convert degrees to
radians and performs a series of trigonometric calculations to
determine the distance.

function DISTANCE_BETWEEN(lat1,lon1,lat2,lon2){

const earthRadius = 6371;

const dLat = degreesToRadians(lat2-lat1);

const dLon = degreesToRadians(lon2-lon1);

const a = Math.sin(dLat / 2) * Math.sin(dLat / 2) +

Math.cos(degreesToRadians(lat1)) *

Math.cos(degreesToRadians(lat2)) *

Math.sin(dLon / 2) * Math.sin(dLon / 2);

const c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));

const distance = earthRadius * c;

return distance;

}

function degreesToRadians(deg){

return deg * Math.PI /180;

}

latitude 1 longitude 1 latitude 2 longitude 2 distance

37.7749 -122.4194 40.7128 -74.006 4129.086165

Laurence Svekis https://basescripts.com/

17

https://basescripts.com/


51.5074 -0.1278 48.8566 2.3522 343.5560603

-33.8688 151.2093 22.3193 114.1694 7375.505614

35.6895 139.6917 37.5665 126.978 1152.618258

Laurence Svekis https://basescripts.com/

18

https://basescripts.com/


Check if a given string is a palindrome
https://youtu.be/8oalWIwdNMc

A palindrome is a word, phrase, number, or sequence of
characters that reads the same forward and backward, ignoring
spaces, punctuation, and capitalization (in the case of letters). In
other words, a palindrome remains unchanged when its order is
reversed.
For example, here are some examples of palindromes:
● "level"
● "madam"
● "racecar"
● "A man, a plan, a canal: Panama"
● "12321"
● "deed"

In each of these examples, the sequence of characters reads the
same from left to right as it does from right to left. Palindromes
can be formed by individual letters, entire words, or even
complete sentences.

Laurence Svekis https://basescripts.com/

19

https://youtu.be/8oalWIwdNMc
https://basescripts.com/


function IS_PALINDROME(str){

str = str.toString();

str = str.toLowerCase().replace(/[^a-z0-9]/g,'');

for(let i=0;i<str.length/2;i++){

if(str[i] !== str[str.length-1-i]){

return false;

}

}

return true;

}

The above code defines a function called IS_PALINDROME that
checks whether a given input string is a palindrome. Here's a
step-by-step breakdown of the code:

Laurence Svekis https://basescripts.com/

20

https://basescripts.com/


1. Convert the input str to a string explicitly using the
toString() method. This step ensures that the input is
treated as a string, even if it was originally a different data
type.

2. Convert the string to lowercase using the toLowerCase()
method. This step ensures that the comparison is
case-insensitive.

3. Remove any non-alphanumeric characters from the string
using the replace() method with a regular expression
/[^a-z0-9]/g and replacing them with an empty string. This
step eliminates any characters that are not letters or digits
from the string.

4. Iterate over the characters in the string using a for loop. The
loop variable i starts at 0 and increments until it reaches half
of the string length (str.length/2).

5. Inside the loop, compare the character at index i with the
character at the corresponding index from the end of the
string (str.length-1-i).

6. If the characters being compared are not equal, it means the
string is not a palindrome. In this case, the function
immediately returns false to indicate that the input string is
not a palindrome.

7. If the loop completes without finding any unequal
characters, it means the string is a palindrome. The function
returns true to indicate that the input string is a palindrome.

In summary, the IS_PALINDROME function checks whether a
given input string is a palindrome by converting the string to
lowercase, removing non-alphanumeric characters, and then
comparing characters from both ends of the string towards the
middle. If all the characters match, the function returns true,
indicating that the string is a palindrome. If any characters don't

Laurence Svekis https://basescripts.com/

21

https://basescripts.com/


match, the function returns false, indicating that the string is not
a palindrome.

Input

racecar TRUE

Level TRUE

A man a plan a canal Panama TRUE

hello FALSE

12321 TRUE

Was it a car or a cat I saw? TRUE

No x in Nixon TRUE

Palindrome FALSE

Laurence Svekis https://basescripts.com/

22

https://basescripts.com/


Age of a person based on their birthdate
https://youtu.be/7FO7QONKKuQ

function CAL_AGE(birthdate){

const mils = Date.now() - birthdate.getTime();

const ageDate = new Date(mils);

const age = Math.abs(ageDate.getUTCFullYear()-1970);

return age;

}

The above code defines a function called CAL_AGE that calculates
the age in years based on a given birthdate. Here's a
step-by-step breakdown of the code:

Laurence Svekis https://basescripts.com/

23

https://youtu.be/7FO7QONKKuQ
https://basescripts.com/


1. Calculate the difference in milliseconds between the current
date and time (obtained using Date.now()) and the
birthdate. This is done by subtracting the birthdate's time in
milliseconds (obtained using birthdate.getTime()) from the
current time. The result is stored in the variable mils.

2. Create a new Date object called ageDate using the
calculated mils value. This object represents a date that is
the calculated difference in milliseconds from the reference
date (January 1, 1970, 00:00:00 UTC).

3. Calculate the age in years by subtracting 1970 (the
reference year) from the full year (getUTCFullYear()) of the
ageDate object. The getUTCFullYear() method retrieves the
year in UTC (Coordinated Universal Time) format.

4. Use the Math.abs() function to ensure that the age is always
a positive value. This is necessary because the subtraction of
1970 may result in a negative value if the birthdate is in the
future.

5. Return the calculated age as the result of the function.
In summary, the CAL_AGE function takes a birthdate as input and
calculates the age in years based on the current date and time. It
uses the difference in milliseconds between the birthdate and the
current date to determine the age and returns it as an integer.

birthdate Age

1990-01-01 33

1985-03-15 38

1975-12-31 47

2015-07-10 7

1999-11-25 23

Laurence Svekis https://basescripts.com/

24

https://basescripts.com/


Laurence Svekis https://basescripts.com/

25

https://basescripts.com/


Convert a number from decimal to binary
https://youtu.be/3yKhEN_hxhg

function DEC_TO_BINARY(dec){

return dec.toString(2);

}

function DEC_TO_HEX(dec){

return dec.toString(16);

}

The above code consists of two functions: DEC_TO_BINARY and
DEC_TO_HEX. Let's break down each function and its purpose:
1. DEC_TO_BINARY(dec):

● This function takes a decimal number dec as input and
converts it to its binary representation.

Laurence Svekis https://basescripts.com/

26

https://youtu.be/3yKhEN_hxhg
https://basescripts.com/


● The toString(2) method is called on the dec number to
convert it to a string representation in base 2 (binary).

● The function returns the binary representation of the
decimal number as a string.

2. In summary, the DEC_TO_BINARY function converts a
decimal number to its binary representation.

3. DEC_TO_HEX(dec):
● This function takes a decimal number dec as input and
converts it to its hexadecimal representation.

● The toString(16) method is called on the dec number to
convert it to a string representation in base 16
(hexadecimal).

● The function returns the hexadecimal representation of
the decimal number as a string.

4. In summary, the DEC_TO_HEX function converts a decimal
number to its hexadecimal representation.

These functions provide a convenient way to convert decimal
numbers to binary and hexadecimal representations using the
built-in toString method in JavaScript.

Sample Input Expected Output HEX

0 0 0

1 1 1

2 10 2

3 11 3

4 100 4

5 101 5

Laurence Svekis https://basescripts.com/

27

https://basescripts.com/


Random number between two given numbers
https://youtu.be/tWhZGNPCOlQ

function RAN_NUM(min,max){

return Math.floor(Math.random()*(max-min+1))+min;

}

The above code defines a function called RAN_NUM that
generates a random number within a given range. Here's a
step-by-step breakdown of the code:
1. The function takes two parameters, min and max, which
represent the minimum and maximum values of the desired
range.

Laurence Svekis https://basescripts.com/

28

https://youtu.be/tWhZGNPCOlQ
https://basescripts.com/


2. The Math.random() function generates a random decimal
number between 0 (inclusive) and 1 (exclusive). This
function is a built-in JavaScript method that returns a
random floating-point number.

3. The expression Math.random() * (max - min + 1) calculates
a random number within the range (max - min + 1). This
expression scales the random number to fit the desired
range.

4. The Math.floor() function is called on the result of the
previous expression to round down the random number to
the nearest integer. This ensures that the generated number
is an integer within the range (max - min + 1).

5. The rounded-down random number is then added to the min
value using the +min operation. This step shifts the range
from (max - min + 1) to the desired range from min to max.

6. The final result is returned as the output of the function.
In summary, the RAN_NUM function generates a random integer
within a specified range defined by the min and max parameters.
It uses the Math.random() function to generate a random decimal
number, scales it to the desired range, rounds it down to the
nearest integer, and then adjusts the range by adding the min
value.

min max Result

0 4 3

1 6 2

10 20 15

-5 5 1

Laurence Svekis https://basescripts.com/

29

https://basescripts.com/


50 100 52

Laurence Svekis https://basescripts.com/

30

https://basescripts.com/


Sum of the squares of the numbers in a range
https://youtu.be/sTiZFFD-bmc

The provided code defines a function called SUM_OF_SQUARES
that calculates the sum of the squares of numbers within a given
range. Here's a step-by-step breakdown of the code:
1. Initialize a variable sum with a value of 0. This variable will
store the cumulative sum of the squares.

2. Convert the range input to a string using the toString()
method. This step ensures that the range is treated as a
string, even if it was originally a different data type.

3. Remove any whitespace characters from the string using the
replace() method with a regular expression /\s+/g and
replacing them with an empty string. This step eliminates
any spaces within the string.

4. Trim any leading or trailing whitespace from the string using
the trim() method. This step ensures that any extraneous
whitespace at the beginning or end of the string is removed.

Laurence Svekis https://basescripts.com/

31

https://youtu.be/sTiZFFD-bmc
https://basescripts.com/


5. Split the modified range string into an array of individual
values using the split() method. The values are split using
commas as the delimiter.

6. Iterate over each value in the arr array using the forEach()
method.

7. Within the loop, convert each value to a number by implicitly
multiplying it with itself (val * val). This step ensures that
the value is treated as a number for the subsequent
addition.

8. Add the squared value to the sum variable.
9. After iterating through all the values, return the calculated
sum as the result of the function.

In summary, the SUM_OF_SQUARES function takes a range of
numbers as input, calculates the square of each number within
the range, and returns the sum of the squared values. The code
ensures that the input range is converted to a string, any
whitespace is removed, and each value is squared and added to
the cumulative sum.

function SUM_OF_SQUARES(range){

let sum = 0;

range = range.toString();

range = range.replace(/\s+/g,'').trim();

const arr = range.split(',');

arr.forEach(val =>{

sum += val * val;

})

Laurence Svekis https://basescripts.com/

32

https://basescripts.com/


return sum;

//return JSON.stringify(arr);

}

Range

1, 2, 3, 4, 5, 6,7 140

10, 20, 30, 40, 50 5500

2, 4, 6, 8, 10 220

1,2,3,4,5 55

2 4

Laurence Svekis https://basescripts.com/

33

https://basescripts.com/

