
Google Sheets Formulas - Examples and
Code Explanations

Calculate average from range above a threshold 2

AVERAGE_ABOVE_THRESHOLD 2

Calculate a weighted Average from a range of values 8

WEIGHTED_AVERAGE 8

Get the total cost custom sheets formula calculate values across ranges 12

CALC_TOTAL_COST 12

Calculate total with discount using a custom Apps Script formula 18

CALC_TOTAL_AMOUNT 18

How to get the total amount of items including the tax rate 24

CALC_TOTAL_AMOUNT 24

How to use data from two sheets to create a custom Apps Script function 31

CALC_TOTAL_COST_WITH_TAX 31

Learn more about Google Apps Scripts with Examples and Source Code Laurence
Svekis Courses https://basescripts.com/

1

https://basescripts.com/

Calculate average from range above a threshold

AVERAGE_ABOVE_THRESHOLD

7 4

9.33333333

3

6

10.6666666

7

15

11.3333333

3

11

8

Learn more about Google Apps Scripts with Examples and Source Code Laurence
Svekis Courses https://basescripts.com/

2

https://basescripts.com/

In this example, we'll create a custom formula that calculates the average of a

range of numbers, excluding any values that are less than a specified threshold.

Scenario: You have a range of numbers in column A and a threshold value in cell

B1. You want to calculate the average of the numbers in column A that are greater

than or equal to the threshold value in B1.

Here are the steps to achieve this:

Step 1: Setting up the Spreadsheet

 Create a new Google Sheets document.

 Enter your data in column A, starting from A2 (A1 will be used for the

threshold value).

 Enter the threshold value in cell B1.

Step 2: Writing the Google Apps Script Code

 Click on "Extensions" in the top menu, then select "Apps Script".

 Delete any default code and replace it with the following script:

// Custom formula to calculate the average of values above a certain threshold

function AVERAGE_ABOVE_THRESHOLD(range,threshold){

let sum = 0;

let count = 0;

for (let i = 0; i < range.length; i++) {

if (range[i] >= threshold) {

sum += range[i];

count++;

}

}
Learn more about Google Apps Scripts with Examples and Source Code Laurence

Svekis Courses https://basescripts.com/
3

https://basescripts.com/

if(count>0){

return sum /count;

}else{

return "No Values above Threshold";

}

}

Step 3: Using the Custom Formula in Google Sheets

 Go back to your Google Sheets document.

 In a cell where you want the result to appear (let's say cell C1), enter the

following formula:

=AVERAGE_ABOVE_THRESHOLD(A2:A, B1)

Explanation of the Code:

 The function AVERAGE_ABOVE_THRESHOLD takes two parameters: range

and threshold.

● range: This parameter represents the range of cells containing the

numbers you want to consider for the average calculation.

● threshold: This parameter is the threshold value specified in cell B1.

 Inside the function, we initialize sum to store the sum of values and count

to keep track of the number of values above the threshold.

 We loop through each value in the range and check if it's greater than or

equal to the threshold. If it is, we add it to the sum and increment the

count.
Learn more about Google Apps Scripts with Examples and Source Code Laurence

Svekis Courses https://basescripts.com/
4

https://basescripts.com/

 After looping through all values, we calculate the average by dividing the

sum by the count.

 If no values are above the threshold, the function returns the message "No

values above the threshold".

Step 4: Testing the Custom Formula

 Enter some numbers in column A starting from A2.

 Enter a threshold value in cell B1.

 Use the custom formula in cell C1 to calculate the average of values above

the threshold.

Remember that using custom formulas with Google Apps Script requires enabling

the "Google Apps Script" extension in your Google Sheets document. Also, make

sure that your custom function name (AVERAGE_ABOVE_THRESHOLD) matches

exactly with what you use in the formula.

 Sheet Name: Let's assume you're working in the default "Sheet1".

 Column A: This column will contain the list of numbers you want to

calculate the average of. Let's say you have the following numbers in

column A, starting from A2:

| A |

|-------|

| 10 |

| 15 |

| 5 |

| 20 |
Learn more about Google Apps Scripts with Examples and Source Code Laurence

Svekis Courses https://basescripts.com/
5

https://basescripts.com/

| 8 |

 Cell B1: This cell will contain the threshold value. For this example, let's

assume you have set the threshold to 10 in cell B1.

| B |

|-------|

| 10 |

 Cell C1: This is where you will use the custom formula to calculate the

average of values above the threshold. Enter the formula below in cell C1:

=AVERAGE_ABOVE_THRESHOLD(A2:A, B1)

With this setup, the custom formula will calculate the average of numbers that are

greater than or equal to the threshold (10 in this case), which should result in an

average of 15.

Please note that for the custom formula to work, you need to follow the steps

outlined in the previous response to create the Apps Script code and enable the

extension in your Google Sheets.

Sheet Name: Sheet1

Column A Column B

Learn more about Google Apps Scripts with Examples and Source Code Laurence
Svekis Courses https://basescripts.com/

6

https://basescripts.com/

10 10

15

5

20

8

Explanation:

● Column A contains the list of numbers you want to calculate the average of.

● Column B contains the threshold value, which is 10 in this example.

Formula: In cell C1, you will use the custom formula to calculate the average of

values above the threshold.

Cell C1

=AVERAGE_ABOVE_THRESHOLD(A2:A, B1)

With this setup, the custom formula will calculate the average of numbers in

Column A that are greater than or equal to the threshold (10). The result should

be an average of 15 ([(10 + 15 + 20) / 3]).

Learn more about Google Apps Scripts with Examples and Source Code Laurence
Svekis Courses https://basescripts.com/

7

https://basescripts.com/

Calculate a weighted Average from a range of values

WEIGHTED_AVERAGE

Value Weight

10 0.1

15 0.1

5 1

Result 6.25

Learn more about Google Apps Scripts with Examples and Source Code Laurence
Svekis Courses https://basescripts.com/

8

https://basescripts.com/

Scenario: You want to create a custom Google Sheets formula that calculates the

weighted average of values in a specified range, where each value is multiplied by

its corresponding weight.

Data Table:

A B C

1 Value Weight

2 10 0.3

3 15 0.5

4 5 0.2

5

6 Result

Step 1: Set Up the Spreadsheet

 Open a new Google Sheets document.

 Enter the data table as shown above in columns A and B.

 Leave cells C2 and C6 empty for now.

Step 2: Write the Google Apps Script Code

 Click on "Extensions" in the top menu, then select "Apps Script".

 Replace the default code with the following script:

// Custom formula to calculate the weighted average of values

function WEIGHTED_AVERAGE(values,weights){

Learn more about Google Apps Scripts with Examples and Source Code Laurence
Svekis Courses https://basescripts.com/

9

https://basescripts.com/

let sum = 0;

let totalWeight = 0;

for(let i=0;i<values.length;i++){

sum += values[i] * weights[i];

totalWeight += weights[i];

}

return sum/totalWeight;

}

Step 3: Use the Custom Formula in Google Sheets

 Go back to your Google Sheets document.

 In cell C6, enter the following formula:

=WEIGHTED_AVERAGE(A2:A4, B2:B4)

Explanation:

 The WEIGHTED_AVERAGE function takes two parameters: values and

weights. Both parameters represent ranges of cells that hold the values and

weights, respectively.

 Inside the function, we initialize the sum variable to store the cumulative

product of each value multiplied by its corresponding weight, and the

totalWeight variable to store the sum of weights.

Learn more about Google Apps Scripts with Examples and Source Code Laurence
Svekis Courses https://basescripts.com/

10

https://basescripts.com/

 The for loop iterates through each value in the values range. For each value,

it multiplies the value by its corresponding weight from the weights range

and adds it to the sum. Additionally, it adds the weight to the totalWeight.

 After looping through all values, the function returns the weighted average

by dividing the sum by the totalWeight.

Step 4: Testing the Custom Formula

 Enter the values and weights in columns A and B, respectively.

 Use the custom formula in cell C6 to calculate the weighted average.

For example, if you input the values 10, 15, and 5 in cells A2:A4 and the weights

0.3, 0.5, and 0.2 in cells B2:B4, the calculated weighted average in cell C6 should

be approximately 11.67.

Remember that you need to enable the "Google Apps Script" extension and use

the exact function name (WEIGHTED_AVERAGE) in your formula.

Learn more about Google Apps Scripts with Examples and Source Code Laurence
Svekis Courses https://basescripts.com/

11

https://basescripts.com/

Get the total cost custom sheets formula calculate values
across ranges

CALC_TOTAL_COST

Item Quantity Price Cost

Item 1 2 12 24

Item 2 3 14 42

Item 3 2 25 50

Total Cost 116

Scenario: You have a list of items with their quantities and prices in columns A, B,

and C. You want to create a custom formula that calculates the total cost for each

item (quantity * price) and provides the overall total of all items' costs.

Learn more about Google Apps Scripts with Examples and Source Code Laurence
Svekis Courses https://basescripts.com/

12

https://basescripts.com/

Here are the steps to achieve this:

Step 1: Setting up the Spreadsheet

 Create a new Google Sheets document.

 Enter your data in columns A, B, and C starting from row 2.

 Leave a blank cell in column D for the calculated cost for each item.

 Leave another blank cell in column E for the custom formula that calculates

the total cost.

Data Table:

A B C D E

Item Quantity Price Cost

Item 1 5 10

Item 2 3 15

Item 3 2 20

Total Cost cuntio

Step 2: Writing the Google Apps Script Code

 Click on "Extensions" in the top menu, then select "Apps Script".

 Delete any default code and replace it with the following script:

// Custom formula to calculate the total cost for each item and overall total

function CALC_TOTAL_COST(items, quantities, prices) {

Learn more about Google Apps Scripts with Examples and Source Code Laurence
Svekis Courses https://basescripts.com/

13

https://basescripts.com/

var totalCost = 0;

for (var i = 0; i < items.length; i++) {

var cost = quantities[i] * prices[i];

totalCost += cost;

items[i][3] = cost;

}

return totalCost;

}

Step 3: Using the Custom Formula in Google Sheets

 Go back to your Google Sheets document.

 In a cell where you want the total cost to appear (let's say cell E6), enter the

following formula:

=CALC_TOTAL_COST(A2:A4, B2:B4, C2:C4)

Learn more about Google Apps Scripts with Examples and Source Code Laurence
Svekis Courses https://basescripts.com/

14

https://basescripts.com/

function CALC_SUB(price,qty){

return price * qty;

}

function CALC_TOTAL_COST(items, quantities, prices) {

let totalCost = 0;

let output = '';

for(let i=0;i<items.length;i++){

const cost = quantities[i] * prices[i];

output += `${items[i]} * ${quantities[i]}, `;

totalCost += cost;

}

return `${output} total cost is $${totalCost}`;

}

Explanation of the Code:

Learn more about Google Apps Scripts with Examples and Source Code Laurence
Svekis Courses https://basescripts.com/

15

https://basescripts.com/

 The function CALC_TOTAL_COST takes three parameters: items, quantities,

and prices.

● items: This parameter represents the range of cells containing the

items' names.

● quantities: This parameter represents the range of cells containing

the quantities for each item.

● prices: This parameter represents the range of cells containing the

prices for each item.

 Inside the function, we initialize the totalCost variable to keep track of the

overall cost.

 The for loop iterates through each item. For each item, it calculates the cost

by multiplying the quantity and price, and then adds this cost to the

totalCost.

 Additionally, it updates the corresponding cell in column D (the "Cost"

column) with the calculated cost for each item.

 The function returns the overall totalCost.

Step 4: Testing the Custom Formula

 Enter the items, quantities, and prices in columns A, B, and C starting from

row 2.

 Use the custom formula in cell E6 to calculate the overall total cost of all

items.

For example, if you have entered the data as shown in the data table, the

calculated total cost in cell E6 should be 110.

Remember to enable the "Google Apps Script" extension and use the exact

function name (CALC_TOTAL_COST) in your formula.
Learn more about Google Apps Scripts with Examples and Source Code Laurence

Svekis Courses https://basescripts.com/
16

https://basescripts.com/

CALC_SUB(price, qty): This function takes in two parameters, price and qty

(quantity). It calculates the subtotal cost of a product by multiplying the given

price with the given quantity. The function simply returns the result of this

multiplication.

function CALC_SUB(price,qty){

return price * qty;

}

CALC_TOTAL_COST(items, quantities, prices): This function is more complex and

takes three arrays as parameters: items, quantities, and prices. It calculates the

total cost for a list of items based on their quantities and prices. The function

iterates over each item using a for loop and calculates the cost of each item by

multiplying its quantity with its corresponding price.

The function maintains two variables: totalCost to keep track of the cumulative

cost of all items, and output to store a string that records the calculation for each

item.

Inside the loop, the cost of the current item is calculated using quantities[i] *

prices[i], and then the item's description along with its quantity is added to the

output string. The calculated cost is also added to the totalCost.

After iterating through all items, the function returns a string containing the

calculations for each item and the total cost.

function CALC_TOTAL_COST(items, quantities, prices) {
Learn more about Google Apps Scripts with Examples and Source Code Laurence

Svekis Courses https://basescripts.com/
17

https://basescripts.com/

let totalCost = 0;

let output = '';

for(let i=0;i<items.length;i++){

const cost = quantities[i] * prices[i];

output += `${items[i]} * ${quantities[i]}, `;

totalCost += cost;

}

return `${output} total cost is $${totalCost}`;

}

// Output: "Apple * 5, Banana * 3, Orange * 2, total cost is $7.1"

The CALC_TOTAL_COST function is designed to calculate the total cost of

purchasing multiple items with their respective quantities and prices. The function

returns a formatted string that includes both the item calculations and the total

cost.

Calculate total with discount using a custom Apps Script
formula

CALC_TOTAL_AMOUNT

Learn more about Google Apps Scripts with Examples and Source Code Laurence
Svekis Courses https://basescripts.com/

18

https://basescripts.com/

Item Quantity Price Discount Total Amount

Item 1 5 10 0.1 45 45

Item 2 2 15 0.05 28.5 28.5

Item 3 3 20 0.2 48 48

CALC_DIS(qty, cost, discount): This function calculates the total cost for a

particular quantity of items, given their individual cost and a discount rate. It takes

three parameters: qty (quantity), cost (individual cost of each item), and discount

(discount rate as a decimal between 0 and 1).

Inside the function, a variable named total is initialized to 0. Then, the total cost is

calculated by multiplying the qty with the cost, and then further reducing the

result by the product of qty, cost, and discount. The 1 - discount factor is used to

apply the discount rate.

The calculated total is returned by the function.

function CALC_DIS(qty,cost,discount){

let total = 0;

total = qty * cost * (1-discount);

return total;

Learn more about Google Apps Scripts with Examples and Source Code Laurence
Svekis Courses https://basescripts.com/

19

https://basescripts.com/

}

const totalCost = CALC_DIS(5, 10, 0.1); // Calculates (5 * 10 * 0.9) = 45

console.log(totalCost); // Output: 45

CALC_TOTAL_AMOUNT(items, quantities, prices, discounts): This function

calculates the total amount for each item in a list, considering their quantities,

individual prices, and discount rates. It takes four arrays as parameters: items

(item names), quantities (quantities of each item), prices (individual prices of each

item), and discounts (discount rates for each item).

The function iterates over each item using a for loop. Inside the loop, it extracts

the corresponding quantity, price, and discount for the current item. The total

amount for the item is then calculated by multiplying quantity, price, and 1 -

discount. This amount is added to the totalAmounts array.

After iterating through all items, the function returns an array (totalAmounts)

containing the calculated total amounts for each item.

function CALC_TOTAL_AMOUNT(items,quantities,prices,discounts){

let totalAmounts = [];

for(let i=0;i<items.length;i++){

let quantity = quantities[i];

let price = prices[i];

let discount = discounts[i];

const itemAmount = quantity * price * (1-discount);

totalAmounts.push([itemAmount]);

}
Learn more about Google Apps Scripts with Examples and Source Code Laurence

Svekis Courses https://basescripts.com/
20

https://basescripts.com/

return totalAmounts;

}

const items = ['Apple', 'Banana', 'Orange'];

const quantities = [5, 3, 2];

const prices = [1, 0.5, 0.8];

const discounts = [0.1, 0.2, 0.15];

const totalAmountsArray = CALC_TOTAL_AMOUNT(items, quantities, prices,

discounts);

console.log(totalAmountsArray);

// Output: [[4.5], [1.2], [1.36]]

The CALC_DIS function calculates the total cost considering the quantity,

individual cost, and discount. The CALC_TOTAL_AMOUNT function calculates the

total amount for each item in a list, accounting for quantities, prices, and

discounts, and returns an array of these amounts.

In this example, we'll create a custom formula that calculates the total amount of

a purchase with discounts based on the quantity of items purchased.

Scenario: You want to create a custom formula that calculates the total amount of

a purchase with discounts based on the quantity of items purchased.

Data Table:

A B C D E

Learn more about Google Apps Scripts with Examples and Source Code Laurence
Svekis Courses https://basescripts.com/

21

https://basescripts.com/

Item Quantity Price Discount Total Amount

Item 1 5 10 0.1

Item 2 2 15 0.05

Item 3 3 20 0.2

Total

Step 1: Setting up the Spreadsheet

 Create a new Google Sheets document.

 Enter the item names, quantities, prices, and discounts in columns A to D

starting from row 2.

 Leave cells in column E empty for now.

Step 2: Writing the Google Apps Script Code

 Click on "Extensions" in the top menu, then select "Apps Script".

 Delete any default code and replace it with the following script:

// Custom formula to calculate the total amount with discounts

function CALC_TOTAL_AMOUNT(items, quantities, prices, discounts) {

var totalAmounts = [];

for (var i = 0; i < items.length; i++) {

var quantity = quantities[i];

var price = prices[i];

Learn more about Google Apps Scripts with Examples and Source Code Laurence
Svekis Courses https://basescripts.com/

22

https://basescripts.com/

var discount = discounts[i];

var itemAmount = quantity * price * (1 - discount);

totalAmounts.push([itemAmount]);

}

return totalAmounts;

}

Step 3: Using the Custom Formula in Google Sheets

 Go back to your Google Sheets document.

 In cell E2, enter the following formula:

=CALC_TOTAL_AMOUNT(A2:A, B2:B, C2:C, D2:D)

Explanation of the Code:

 The function CALC_TOTAL_AMOUNT calculates the total amount of a

purchase with discounts based on the quantity of items purchased.

 It takes four parameters: items, quantities, prices, and discounts.

● items: The range of cells containing the item names.

● quantities: The range of cells containing the quantities of items

purchased.

● prices: The range of cells containing the prices per item.

● discounts: The range of cells containing the discounts for each item.
Learn more about Google Apps Scripts with Examples and Source Code Laurence

Svekis Courses https://basescripts.com/
23

https://basescripts.com/

 Inside the function, a loop iterates through each item.

 The total amount for each item is calculated by multiplying the quantity,

price, and the complement of the discount.

 The calculated total amounts are stored in the totalAmounts array.

 The function returns the array of calculated total amounts.

Step 4: Testing the Custom Formula

 Enter item names, quantities, prices, and discounts in columns A to D

starting from row 2.

 Use the custom formula in cell E2 to calculate the total amount of the

purchase with discounts for each item.

For example, if you have entered the item details as shown in the data table, the

calculated total amounts after applying discounts should appear in column E.

Remember to enable the "Google Apps Script" extension and use the exact

function name (CALC_TOTAL_AMOUNT) in your formula.

How to get the total amount of items including the tax
rate

CALC_TOTAL_AMOUNT

Learn more about Google Apps Scripts with Examples and Source Code Laurence
Svekis Courses https://basescripts.com/

24

https://basescripts.com/

Product Price Quantity Tax Rate Subtotal Total Amount

Product A 10 5 0.08 4 54

Product B 20 3 0.05 3 63

Product C 15 2 0.1 3 33

Total 150

In this example, we'll create a custom formula that calculates the total amount of

a sales transaction based on different products and their quantities.

Scenario: You want to create a custom formula that calculates the total amount of

a sales transaction based on different products and their quantities, considering

the tax rate.

Data Table:

A B C D E F

Product Price Quantity Tax Rate Subtotal Total Amount

Product A 10 5 0.08

Product B 20 3 0.05

Product C 15 2 0.10

Total

Learn more about Google Apps Scripts with Examples and Source Code Laurence
Svekis Courses https://basescripts.com/

25

https://basescripts.com/

Step 1: Setting up the Spreadsheet

 Create a new Google Sheets document.

 Enter the product names, prices, quantities, and tax rates in columns A to D

starting from row 2.

 Leave cells in columns E and F empty for now.

Step 2: Writing the Google Apps Script Code

 Click on "Extensions" in the top menu, then select "Apps Script".

 Delete any default code and replace it with the following script:

Step 3: Using the Custom Formula in Google Sheets

 Go back to your Google Sheets document.

 In cell F2, enter the following formula:

=CALC_TOTAL_AMOUNT(A2:A, B2:B, C2:C, D2:D)

function CALC_TAX_TOTAL(price,qty,tax){

const total = price * qty * tax;

return total;

}

function CALC_TAX_TOTAL_AMOUNT(items,price,qty,tax){

let total = 0;

const arr = [];

for(let i=0;i<items.length;i++){

const tot = price[i] * qty[i];

const subTotal = tot * tax[i];

arr.push([subTotal+tot]);
Learn more about Google Apps Scripts with Examples and Source Code Laurence

Svekis Courses https://basescripts.com/
26

https://basescripts.com/

total += subTotal+tot;

}

arr.push(total);

return arr;

}

CALC_TAX_TOTAL(price, qty, tax): This function calculates the total tax amount for

a given price, quantity, and tax rate. It takes three parameters: price (individual

price), qty (quantity), and tax (tax rate as a decimal between 0 and 1).

Inside the function, a constant named total is calculated by multiplying the price

and qty, and then further multiplying the result by the tax. This calculates the tax

amount for the specified quantity of items at the given price.

The calculated total tax amount is returned by the function.

function CALC_TAX_TOTAL(price, qty, tax) {

const total = price * qty * tax;

return total;

}

 Example usage:

const taxAmount = CALC_TAX_TOTAL(10, 5, 0.1); // Calculates (10 * 5 * 0.1) = 5

console.log(taxAmount); // Output: 5

CALC_TAX_TOTAL_AMOUNT(items, price, qty, tax): This function calculates the

total amount, including tax, for a list of items with their respective prices,
Learn more about Google Apps Scripts with Examples and Source Code Laurence

Svekis Courses https://basescripts.com/
27

https://basescripts.com/

quantities, and tax rates. It takes four arrays as parameters: items (item names),

price (individual prices), qty (quantities of each item), and tax (tax rates for each

item).

The function initializes two variables: total to keep track of the cumulative total

amount, and an array arr to store the subtotals and the final total.

It then iterates over each item using a for loop. Inside the loop, it calculates the

total amount for the current item by multiplying its price and quantity. It also

calculates the subtotal by multiplying the total amount with the tax rate.

The subtotal, when added to the total amount, gives the total amount including

tax for the item. This value is added to the arr array, and the total variable is

updated.

After iterating through all items, the final total is appended to the arr array. The

function then returns the arr array containing the subtotals for each item and the

final total.

function CALC_TAX_TOTAL_AMOUNT(items, price, qty, tax) {

let total = 0;

const arr = [];

for (let i = 0; i < items.length; i++) {

const tot = price[i] * qty[i];

const subTotal = tot * tax[i];

arr.push([subTotal + tot]);

total += subTotal + tot;

}

arr.push(total);
Learn more about Google Apps Scripts with Examples and Source Code Laurence

Svekis Courses https://basescripts.com/
28

https://basescripts.com/

return arr;

}

 Example usage:

const items = ['Apple', 'Banana', 'Orange'];

const prices = [1, 0.5, 0.8];

const quantities = [5, 3, 2];

const taxes = [0.1, 0.15, 0.08];

const totalAmountsArray = CALC_TAX_TOTAL_AMOUNT(items, prices, quantities,

taxes);

console.log(totalAmountsArray);

// Output: [[5.5], [0.975], [1.36], 7.835]

The CALC_TAX_TOTAL function calculates the tax amount for a specified price and

quantity. The CALC_TAX_TOTAL_AMOUNT function calculates the total amount

including tax for each item in a list, considering their prices, quantities, and tax

rates, and returns an array containing subtotals and the final total.

Explanation of the Code:

 The function CALC_TOTAL_AMOUNT calculates the total amount of a sales

transaction based on different products, their prices, quantities, and tax

rates.

 It takes four parameters: products, prices, quantities, and taxRates.

● products: The range of cells containing the product names.

● prices: The range of cells containing the prices of each product.
Learn more about Google Apps Scripts with Examples and Source Code Laurence

Svekis Courses https://basescripts.com/
29

https://basescripts.com/

● quantities: The range of cells containing the quantities of each

product.

● taxRates: The range of cells containing the tax rates for each product.

 Inside the function, a loop iterates through each product.

 For each product, it calculates the subtotal by multiplying the price and

quantity.

 It then calculates the tax amount by multiplying the subtotal with the tax

rate.

 The item total is calculated by adding the subtotal and tax.

 The calculated item totals are accumulated to calculate the total amount of

the sales transaction.

 The function returns the total amount of the sales transaction.

Step 4: Testing the Custom Formula

 Enter product names, prices, quantities, and tax rates in columns A to D

starting from row 2.

 Use the custom formula in cell F2 to calculate the total amount of the sales

transaction.

For example, if you have entered the product details as shown in the data table,

the calculated total amount of the sales transaction should appear in cell F2.

Remember to enable the "Google Apps Script" extension and use the exact

function name (CALC_TOTAL_AMOUNT) in your formula.

Learn more about Google Apps Scripts with Examples and Source Code Laurence
Svekis Courses https://basescripts.com/

30

https://basescripts.com/

How to use data from two sheets to create a custom
Apps Script function

CALC_TOTAL_COST_WITH_TAX

Learn more about Google Apps Scripts with Examples and Source Code Laurence
Svekis Courses https://basescripts.com/

31

https://basescripts.com/

function getTaxRate(category) {

const sheets = SpreadsheetApp.getActive().getSheetByName('TaxTable');

const taxTable = sheets.getDataRange().getValues();

let tax = 0

taxTable.forEach(val =>{

if (val[0] == category) {

tax = val[1];

}

})

return tax;

}

function test(){

Logger.log(getTaxRate('Category 1'))

}

Category Tax Rate

Category 1 0.1

Category 2 0.15

Category 3 0.08

Learn more about Google Apps Scripts with Examples and Source Code Laurence
Svekis Courses https://basescripts.com/

32

https://basescripts.com/

Item Quantity Price Category Cost

Item 1 5 10 Category 3 54

Item 2 3 15 Category 2 51.75

Item 3 2 20 Category 1 44

Total Cost 149.75

getTaxRate(category): This function retrieves the tax rate for a specific category

from a sheet named 'TaxTable' within the active spreadsheet. Here's a detailed

breakdown of how this function works:

● const sheets =

SpreadsheetApp.getActive().getSheetByName('TaxTable');: This line

gets the active spreadsheet and fetches the sheet named 'TaxTable'

using the getSheetByName method. The variable sheets now holds a

reference to this sheet.

● const taxTable = sheets.getDataRange().getValues();: Here, the

getDataRange() method is used to get the entire range of data in the

'TaxTable' sheet. The getValues() method is then used to retrieve the

values within that range. This produces a two-dimensional array

called taxTable, where each row represents a row in the sheet, and

each column represents a cell value in that row.

● let tax = 0;: A variable named tax is initialized to 0. This variable will

store the tax rate for the specified category.

Learn more about Google Apps Scripts with Examples and Source Code Laurence
Svekis Courses https://basescripts.com/

33

https://basescripts.com/

● taxTable.forEach(val => {...}: This line initiates a loop that iterates

through each row of the taxTable array. For each row (represented by

the array val), the following code block is executed:

● if (val[0] == category) { tax = val[1]; }: This condition checks

whether the value in the first column of the current row

(val[0]) matches the provided category. If there's a match, it

means the tax rate for the specified category has been found in

the second column of that row (val[1]). The tax rate is assigned

to the tax variable.

● Finally, the function returns the value of the tax variable, which is

either the tax rate found for the specified category or the default

value of 0 if no match was found.

 test(): This function is a test function that logs the result of calling the

getTaxRate(category) function. It's meant to showcase how the getTaxRate

function works by providing an example usage.

● Logger.log(getTaxRate('Category 1')): This line calls the getTaxRate

function with the argument 'Category 1'. The result, which is the tax

rate associated with this category, is then logged to the execution log

using the Logger.log() method.

In summary, the code retrieves tax rates from a 'TaxTable' sheet based on

specified categories and provides a test function to demonstrate its functionality.

The getTaxRate(category) function looks up the tax rate associated with a given

category, and the test() function showcases this behavior by logging the tax rate

for the category 'Category 1'.

Learn more about Google Apps Scripts with Examples and Source Code Laurence
Svekis Courses https://basescripts.com/

34

https://basescripts.com/

In this example, we'll create a custom formula that calculates the total cost of

items based on their categories, with different tax rates applied to each category.

Scenario: You have a list of items with their quantities, prices, and categories in

columns A, B, and C. Additionally, you have a separate table of categories and

their corresponding tax rates in columns F and G. You want to create a custom

formula that calculates the total cost for each item, considering the tax rates

based on their categories.

Data Table:

A B C D E F G

Item Quantity Price Category Cost

Item 1 5 10 Category 1

Item 2 3 15 Category 2

Item 3 2 20 Category 1

Total Cost

Tax Rate Table:

F G

Category Tax Rate

Category 1 0.1

Learn more about Google Apps Scripts with Examples and Source Code Laurence
Svekis Courses https://basescripts.com/

35

https://basescripts.com/

Category 2 0.15

Category 3 0.08

Step 1: Setting up the Spreadsheet

 Create a new Google Sheets document.

 Enter your data in columns A to C starting from row 2.

 Leave a blank cell in column D for the calculated cost for each item.

 Leave another blank cell in column E for the custom formula that calculates

the total cost.

 Enter the tax rate table data in columns F and G.

Step 2: Writing the Google Apps Script Code

 Click on "Extensions" in the top menu, then select "Apps Script".

 Delete any default code and replace it with the following script:

function CALC_TOTAL_TAX(item,qty,price,cat){

const taxRate = getTaxRate(cat);

const subTotal = qty * price;

const total = subTotal * taxRate + subTotal;

return total;

}

function CALC_FINAL_TOTAL(qty,price,cat){

let total = 0;

for(let i=0;i<qty.length;i++){

const taxRate = getTaxRate(cat[i]);

Learn more about Google Apps Scripts with Examples and Source Code Laurence
Svekis Courses https://basescripts.com/

36

https://basescripts.com/

const subTotal = qty[i] * price[i];

total += subTotal * taxRate + subTotal;

}

return total;

}

Step 3: Using the Custom Formula in Google Sheets

 Go back to your Google Sheets document.

 In a cell where you want the total cost to appear (let's say cell E6), enter the

following formula:

CALC_TOTAL_TAX(item, qty, price, cat): This function calculates the total cost of an

item, including tax, based on its quantity, price, and category. Here's a detailed

breakdown of how this function works:

○ const taxRate = getTaxRate(cat);: This line calls the

getTaxRate(category) function to retrieve the tax rate associated with

the given category.

○ const subTotal = qty * price;: Calculates the subtotal by multiplying

the quantity and the price of the item.

○ const total = subTotal * taxRate + subTotal;: Calculates the total cost

by adding the tax amount to the subtotal. The tax amount is obtained

by multiplying the subtotal by the tax rate.

○ Finally, the function returns the calculated total cost.

CALC_FINAL_TOTAL(qty, price, cat): This function calculates the total cost for

multiple items, considering their quantities, prices, and categories. It iterates
Learn more about Google Apps Scripts with Examples and Source Code Laurence

Svekis Courses https://basescripts.com/
37

https://basescripts.com/

through each item using a for loop, and for each item, it calculates the total cost

including tax using a similar approach to the CALC_TOTAL_TAX function. The

calculated costs for each item are accumulated to calculate the final total cost. The

function returns this final total.

In summary, these functions work together to calculate the total cost of items,

considering their quantities, prices, and tax rates based on categories. The

CALC_TOTAL_TAX function calculates the total cost for a single item, and the

CALC_FINAL_TOTAL function calculates the total cost for multiple items. The

getTaxRate function retrieves the tax rate for a given category from a spreadsheet,

and the test function is a demonstration of how to use the getTaxRate function.

Learn more about Google Apps Scripts with Examples and Source Code Laurence
Svekis Courses https://basescripts.com/

38

https://basescripts.com/

