
How to Format JavaScript Code

1. Indentation: 2

2. Braces and Line Breaks: 3

3. Semicolons: 4

4. Variable Naming: 4

5. Comments: 4

6. Line Length: 5

7. Consistent Formatting: 5

🚀Mastering Code Formatting: Elevate Your JavaScript Skills!💼

Clean and well-structured code is the hallmark of a proficient JavaScript

developer. Here's a quick guide on code formatting best practices:

1. Indentation: Use spaces (2 or 4) for consistent and clear indentation.

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

1

https://basescripts.com/


2. Braces and Line Breaks: Place braces and line breaks consistently for better

code readability.

3. Semicolons: Always use semicolons to prevent unexpected issues.

4. Variable Naming: Employ meaningful variable names in camelCase and

uppercase for constants.

5. Comments: Add comments for context and explanations, enhancing code

understanding.

6. Line Length: Keep lines reasonably short (around 80-120 characters) for

improved readability.

7. Consistent Formatting: Use code formatting tools like ESLint or Prettier for

consistency.

Remember, well-formatted code is not just about aesthetics—it boosts

collaboration and makes debugging a breeze!🧹💻 #JavaScript #CodingStandards

#CleanCode

Formatting code is a crucial aspect of writing clean and maintainable JavaScript.

Properly formatted code is easier to read, understand, and debug. In this guide, I'll

provide a detailed description of code formatting in JavaScript, along with coding

examples.

1. Indentation:
Indentation is the practice of adding consistent spaces or tabs to visually

represent the structure of your code. Standard practice is to use spaces for

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

2

https://basescripts.com/


indentation, typically 2 or 4 spaces per level. Consistency is key, so choose a style

and stick to it throughout your codebase.

Example:

// Good indentation

function greet(name) {

if (name) {

console.log(`Hello, ${name}!`);

} else {

console.log('Hello, world!');

}

}

2. Braces and Line Breaks:
Consistently placing braces and line breaks can significantly improve code

readability. Use braces to define code blocks, and consider placing opening braces

on the same line as the statement or function declaration.

Example:

// Good brace placement

if (condition) {

// code block

} else {

// code block

}

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

3

https://basescripts.com/


3. Semicolons:
While JavaScript automatically inserts semicolons in some cases, it's a good

practice to include them explicitly to avoid unexpected issues. This practice is

called "Always use semicolons."

Example:

// Good use of semicolons

const a = 10;

const b = 20;

4. Variable Naming:
Use descriptive and meaningful variable names to make your code

self-documenting. Use camelCase for variable and function names and use all

uppercase for constants.

Example:

// Good variable naming

const userName = 'JohnDoe';

let itemCount = 5;

const MAX_ITEMS = 10;

5. Comments:
Comments provide context and explanations for your code. Use them sparingly

but effectively to clarify complex logic or document your code's purpose.

Example:

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

4

https://basescripts.com/


// Good use of comments

function calculateTotal(price, quantity) {

// Multiply the price by quantity to get the total cost

const total = price * quantity;

return total;

}

6. Line Length:
Keep your lines of code reasonably short (typically around 80-120 characters) to

improve readability. Use line breaks or continuation characters when necessary.

Example:

// Good line length

const longString = 'This is a long string that should be broken into multiple lines ' +

'for better code readability.';

7. Consistent Formatting:
Consistency is key when it comes to code formatting. Consider using code

formatting tools like ESLint or Prettier to automate and enforce coding style

standards in your projects.

Example (with ESLint):

// .eslintrc.js

module.exports = {

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

5

https://basescripts.com/


extends: 'eslint:recommended',

rules: {

'indent': ['error', 2],

'semi': ['error', 'always'],

// Other rules...

},

};

In summary, formatting your JavaScript code properly is essential for readability

and maintainability. Adopt a consistent coding style, follow best practices, and

consider using tools to help enforce these standards in your projects.

Well-formatted code will make your life as a developer much easier and your

codebase more approachable for others.

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

6

https://basescripts.com/

