
JavaScript Objects Quick Start Guide

Creating an Object 2

Accessing Object Properties 2

Setting Object Properties 2

Adding New Properties 3

Removing Properties 3

Iterating Over Object Properties 4

Objects with Methods 5

Objects as Containers 5

Example 1: Creating and Accessing Object Properties 6

Example 2: Setting and Modifying Object Properties 6

Example 3: Object with Methods 7

Example 4: Iterating Over Object Properties 8

Example 5: Deleting Object Properties 9

Example 6: Nested Objects 10

Example 7: Object Methods and "this" 11

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

1

https://basescripts.com/


Example 8: Object Constructors 12

Example 9: Object Destructuring 13

Example 10: Object Equality 13

JavaScript objects are a core data structure used to store and organize data. They

are collections of key-value pairs, where each key is a unique string (or symbol in

modern JavaScript) that maps to a corresponding value. Objects are versatile and

commonly used in JavaScript to represent complex data structures. Here's a

detailed explanation of how JavaScript objects work, along with examples:

Creating an Object
You can create an object in JavaScript using object literal notation, which consists

of curly braces {} and key-value pairs:

const person = {

firstName: 'John',

lastName: 'Doe',

age: 30,

};

Accessing Object Properties
You can access properties of an object using dot notation or bracket notation:

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

2

https://basescripts.com/


console.log(person.firstName); // 'John'

console.log(person['lastName']); // 'Doe'

Setting Object Properties
You can set or update the value of an object property using assignment:

person.age = 31;

person['firstName'] = 'Jane';

console.log(person); // { firstName: 'Jane', lastName:

'Doe', age: 31 }

Adding New Properties
You can add new properties to an existing object simply by assigning a value to a

new key:

person.email = 'jane@example.com';

console.log(person); // { firstName: 'Jane', lastName:

'Doe', age: 31, email: 'jane@example.com' }

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

3

https://basescripts.com/


Removing Properties
You can remove properties from an object using the delete keyword:

delete person.age;

console.log(person); // { firstName: 'Jane', lastName:

'Doe', email: 'jane@example.com' }

Iterating Over Object Properties
You can loop through an object's properties using for...in loops or methods like

Object.keys(), Object.values(), and Object.entries():

for (const key in person) {

console.log(key, person[key]);

}

const keys = Object.keys(person);

console.log(keys); // ['firstName', 'lastName',

'email']

const values = Object.values(person);

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

4

https://basescripts.com/


console.log(values); // ['Jane', 'Doe',

'jane@example.com']

const entries = Object.entries(person);

console.log(entries);

// [['firstName', 'Jane'], ['lastName', 'Doe'],

['email', 'jane@example.com']]

Objects with Methods
Objects can also contain functions as properties, which are known as methods:

const calculator = {

add: function (x, y) {

return x + y;

},

subtract: function (x, y) {

return x - y;

},

};

console.log(calculator.add(5, 3)); // 8

console.log(calculator.subtract(5, 3)); // 2

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

5

https://basescripts.com/


Objects as Containers
Objects can serve as containers for related data and behavior, making them a

powerful tool for organizing and managing data in JavaScript. They're commonly

used to represent things like user profiles, products, configurations, and more.

In summary, JavaScript objects are essential data structures that use key-value

pairs to organize and store data. Understanding how to create, access, and

manipulate objects is crucial for building complex applications in JavaScript.

These exercises will help reinforce your understanding of JavaScript objects and

their manipulation. Feel free to experiment with more complex objects and

scenarios as you become more comfortable with these concepts.

Example 1: Creating and Accessing Object Properties

// Creating an object

const person = {

firstName: 'John',

lastName: 'Doe',

age: 30,

};

// Accessing object properties

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

6

https://basescripts.com/


console.log(person.firstName); // Exercise: Access and

print the last name

console.log(person.age); // Exercise: Access and

print the age

Exercise 1: Access and print the last name and age of the person object.

Example 2: Setting and Modifying Object Properties

const car = {

make: 'Toyota',

model: 'Camry',

};

// Setting a new property

car.year = 2022;

// Modifying an existing property

car.model = 'Corolla';

console.log(car); // Exercise: Add a property 'color'

with the value 'blue' and modify 'make' to 'Honda'

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

7

https://basescripts.com/


Exercise 2: Add a property named 'color' with the value 'blue' to the car object.

Then, modify the 'make' property to 'Honda'.

Example 3: Object with Methods

const rectangle = {

width: 5,

height: 10,

// Method to calculate area

calculateArea: function () {

return this.width * this.height;

},

};

console.log(rectangle.calculateArea()); // Exercise:

Calculate and print the rectangle's perimeter

Exercise 3: Add a method to the rectangle object that calculates and returns the

rectangle's perimeter (2 * width + 2 * height). Call the method and print the

perimeter.

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

8

https://basescripts.com/


Example 4: Iterating Over Object Properties

const student = {

name: 'Alice',

age: 25,

grade: 'A',

};

// Iterate over object properties

for (const key in student) {

console.log(`${key}: ${student[key]}`);

}

// Exercise: Create a function that prints all

properties and values of an object

Exercise 4: Create a function called printObject that takes an object as a

parameter and prints all its properties and values. Then, use this function to print

the properties and values of the student object.

Example 5: Deleting Object Properties

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

9

https://basescripts.com/


const computer = {

brand: 'Dell',

model: 'XPS 13',

year: 2021,

};

// Deleting a property

delete computer.year;

console.log(computer); // Exercise: Delete the 'model'

property

Exercise 5: Delete the 'model' property from the computer object using the delete

keyword.

Example 6: Nested Objects

const address = {

street: '123 Main St',

city: 'Anytown',

zipCode: '12345',

};

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

10

https://basescripts.com/


const person = {

firstName: 'Alice',

lastName: 'Johnson',

age: 28,

contact: address,

};

// Exercise: Access and print the city of the person's

address

Exercise 6: Access and print the city of the person object's address.

Example 7: Object Methods and "this"

const bankAccount = {

balance: 1000,

deposit: function (amount) {

this.balance += amount;

},

withdraw: function (amount) {

this.balance -= amount;

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

11

https://basescripts.com/


},

};

bankAccount.deposit(500);

bankAccount.withdraw(200);

console.log(bankAccount.balance); // Exercise: Add a

method to check the account balance

Exercise 7: Add a method called checkBalance to the bankAccount object that

returns the current balance. Call the method and print the balance.

Example 8: Object Constructors

function Dog(name, breed, age) {

this.name = name;

this.breed = breed;

this.age = age;

}

const dog1 = new Dog('Buddy', 'Golden Retriever', 3);

const dog2 = new Dog('Max', 'German Shepherd', 2);

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

12

https://basescripts.com/


console.log(dog1); // Exercise: Create a third dog

object and print its details

Exercise 8: Create a third dog3 object using the Dog constructor and print its

details.

Example 9: Object Destructuring

const student = {

firstName: 'Emily',

lastName: 'Smith',

age: 21,

};

const { firstName, lastName } = student;

console.log(`${firstName} ${lastName}`); // Exercise:

Create an object with more properties and use

destructuring to extract them

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

13

https://basescripts.com/


Exercise 9: Create an object with additional properties (e.g., email, major) and use

object destructuring to extract and print those properties.

Example 10: Object Equality

const person1 = {

name: 'Alice',

age: 30,

};

const person2 = {

name: 'Alice',

age: 30,

};

console.log(person1 === person2); // Exercise: Compare

two objects for equality

Exercise 10: Compare two objects for equality. Create two more objects with

different property values and compare them for equality as well.

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

14

https://basescripts.com/


These exercises should further enhance your understanding of JavaScript objects

and how to work with them.

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

15

https://basescripts.com/

