
JavaScript Variables Variables in JavaScript

1. Declaration and Initialization: 3

2. Variable Naming Rules: 3

3. Data Types: 3

4. Assignment: 4

5. Reassignment: 4

6. Scope: 5

7. Hoisting: 6

8. Constants: 6

9. Naming Conventions: 6

Variable Tips and quick code samples 7

1. Variable Declaration: 7

2. Initializing Variables: 7

3. Variable Naming: 8

4. Case Sensitivity: 8

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

1

https://basescripts.com/


5. Avoid Re-declaration: 8

6. Variable Types: 9

7. Variable Scope: 9

8. Hoisting: 9

9. Constants: 10

10. Avoid Global Variables: 10

11. Template Literals: 11

12. Destructuring: 11

Coding Exercises for JavaScript Variables 11

Exercise 1: Declare and Initialize Variables 11

Exercise 2: Variable Reassignment 12

Exercise 3: Variable Scoping 13

Exercise 4: Constants 13

Exercise 5: Variable Hoisting 14

Exercise 6: Template Literals 15

Exercise 7: Destructuring Objects 15

Exercise 8: Dynamic Typing 16

Exercise 9: Variable Naming 16

Exercise 10: Global Variables 17

Variables are fundamental concepts in programming that allow you to store and

manipulate data. In JavaScript, a variable is a named container for holding values.

These values can be numbers, strings, objects, functions, and more. Variables give

your program the ability to store and work with dynamic data.

Here's a detailed description of variables in JavaScript, along with coding

examples:

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

2

https://basescripts.com/


1. Declaration and Initialization:
You can declare a variable using three keywords: var, let, or const.

● var: Historically used to declare variables globally or within a function. It has

functional scoping.

● let: Introduced in ES6, allows you to declare block-scoped variables.

● const: Also introduced in ES6, declares block-scoped variables that cannot

be reassigned.

var globalVar = 10; // Global scope

let localVar = 'Hello'; // Block scope

const pi = 3.14; // Block-scoped constant

2. Variable Naming Rules:
● Variable names must begin with a letter, underscore (_), or dollar sign ($).

● They can contain letters, numbers, underscores, and dollar signs.

● Variable names are case-sensitive.

var myVar = 42;

var _privateVar = 'secret';

var $money = 100;

3. Data Types:
JavaScript has dynamic typing, which means a variable can hold different types of

data.

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

3

https://basescripts.com/


var num = 42; // Number

var str = 'Hello'; // String

var bool = true; // Boolean

var arr = [1, 2, 3]; // Array

var obj = { name: 'John', age: 30 }; // Object

4. Assignment:
You can assign values to variables using the assignment operator (=).

var x = 5;

var name = 'Alice';

5. Reassignment:
Variables declared with var and let can be reassigned, but const variables cannot.

var x = 5;

x = 10; // Reassignment is allowed

let y = 20;

y = 30; // Reassignment is allowed

const z = 42;

z = 50; // Error: Cannot reassign a const variable

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

4

https://basescripts.com/


6. Scope:
Variables have different scopes based on how and where they are declared.

● Global scope: Variables declared outside of any function or block are

accessible throughout the program.

● Function scope: Variables declared inside a function are only accessible

within that function.

● Block scope: Variables declared with let and const are block-scoped,

meaning they are only accessible within the block they are declared in.

var globalVar = 'I am global'; // Global scope

function myFunction() {

var localVar = 'I am local'; // Function scope

console.log(localVar); // Accessible here

}

myFunction();

console.log(globalVar); // Accessible here

if (true) {

let blockVar = 'I am block-scoped'; // Block scope

console.log(blockVar); // Accessible here

}

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

5

https://basescripts.com/


console.log(blockVar); // Error: blockVar is not

defined

7. Hoisting:
JavaScript variables are hoisted, which means they are moved to the top of their

containing scope during compilation.

console.log(hoistedVar); // undefined

var hoistedVar = 5;

8. Constants:
Variables declared with const cannot be reassigned after their initial assignment.

const pi = 3.14;

pi = 3.14159; // Error: Cannot reassign a const

variable

9. Naming Conventions:
It's a good practice to use meaningful variable names to make your code more

readable and maintainable.

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

6

https://basescripts.com/


var age = 30;

var firstName = 'John';

In summary, variables in JavaScript are used to store and manipulate data. They

come in different types, can be declared with various keywords, and have different

scoping rules. Understanding how to declare, assign, and use variables is essential

for writing JavaScript code.

Variable Tips and quick code samples

Here are some tips and code examples for working with JavaScript variables:

1. Variable Declaration:

Use let and const for variable declaration instead of var to avoid common issues

related to scoping.

let age = 25;

const name = 'Alice';

2. Initializing Variables:

Initialize variables when you declare them to avoid unexpected behavior.

let count = 0;

const message = 'Hello, world!';

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

7

https://basescripts.com/


3. Variable Naming:

Use descriptive variable names to make your code more readable and

maintainable.

let totalPrice = 100;

const userName = 'John';

4. Case Sensitivity:

JavaScript is case-sensitive. Be consistent in your variable names.

let myVar = 42;

let myvar = 'Hello'; // Different variable

5. Avoid Re-declaration:

Don't re-declare variables with the same name in the same scope.

let x = 5;

let x = 10; // Error: Variable 'x' has already been

declared

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

8

https://basescripts.com/


6. Variable Types:

JavaScript is dynamically typed, so variables can change types during execution.

let age = 25; // Number

age = 'Twenty-five'; // String (valid but not

recommended)

7. Variable Scope:

Understand variable scope. Variables declared with let and const are

block-scoped.

if (true) {

let blockVar = 'I am block-scoped';

console.log(blockVar); // Accessible here

}

console.log(blockVar); // Error: blockVar is not

defined

8. Hoisting:

Be aware of variable hoisting. Variables declared with var are hoisted to the top of

their scope.

console.log(hoistedVar); // undefined

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

9

https://basescripts.com/


var hoistedVar = 5;

9. Constants:

Use const for values that should not be reassigned.

const pi = 3.14;

pi = 3.14159; // Error: Cannot reassign a const

variable

10. Avoid Global Variables:

Minimize the use of global variables to prevent unintended side effects.

// Global variable (avoid if possible)

let globalCount = 0;

function incrementCount() {

// Accessing and modifying globalCount

globalCount++;

}

incrementCount();

console.log(globalCount); // 1

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

10

https://basescripts.com/


11. Template Literals:

Use template literals for more readable string interpolation.

const name = 'Alice';

const greeting = `Hello, ${name}!`;

console.log(greeting); // Hello, Alice!

12. Destructuring:

Use destructuring to extract values from arrays and objects.

const person = { firstName: 'John', lastName: 'Doe' };

const { firstName, lastName } = person;

console.log(firstName); // John

These tips and code examples should help you work effectively with JavaScript

variables and write clean, maintainable code.

Coding Exercises for JavaScript Variables

Exercise 1: Declare and Initialize Variables

Declare two variables, num1 and num2, and initialize them with numbers. Then,

calculate and log their sum.

// Step 1: Declare and Initialize Variables

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

11

https://basescripts.com/


let num1 = 5;

let num2 = 7;

// Step 2: Calculate Sum

let sum = num1 + num2;

// Step 3: Log the Result

console.log(`The sum of ${num1} and ${num2} is

${sum}`);

Exercise 2: Variable Reassignment

Declare a variable count and initialize it with a number. Then, reassign it to a

different value and log the result.

// Step 1: Declare and Initialize Variable

let count = 10;

// Step 2: Reassign Variable

count = 20;

// Step 3: Log the Result

console.log(`The new value of count is ${count}`);

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

12

https://basescripts.com/


Exercise 3: Variable Scoping

Declare a variable x inside a function and log its value both inside and outside the

function.

// Step 1: Declare Variable Inside a Function

function myFunction() {

let x = 5;

console.log(`Inside function: x = ${x}`);

}

// Step 2: Call the Function

myFunction();

// Step 3: Log Variable Outside the Function (Error

Expected)

console.log(`Outside function: x = ${x}`);

Exercise 4: Constants

Declare a constant variable PI and assign it the value of Pi (3.14). Attempt to

reassign it and handle the error.

// Step 1: Declare a Constant

const PI = 3.14;

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

13

https://basescripts.com/


// Step 2: Attempt to Reassign (Expect Error)

try {

PI = 3.14159; // Error: Cannot reassign a const

variable

} catch (error) {

console.log(`Error: ${error.message}`);

}

Exercise 5: Variable Hoisting

Declare a variable hoistedVar after attempting to log it before declaration.

Observe the result.

// Step 1: Attempt to Log Variable Before Declaration

console.log(hoistedVar); // undefined

// Step 2: Declare the Variable

var hoistedVar = 5;

// Step 3: Log Variable After Declaration

console.log(hoistedVar); // 5

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

14

https://basescripts.com/


Exercise 6: Template Literals

Create a template literal to generate a personalized greeting message.

// Step 1: Declare Variables

const name = 'Alice';

const age = 30;

// Step 2: Generate Greeting Message

const greeting = `Hello, ${name}! You are ${age} years

old.`;

// Step 3: Log the Greeting

console.log(greeting);

Exercise 7: Destructuring Objects

Declare an object person with firstName and lastName properties. Use object

destructuring to extract and log these properties.

// Step 1: Declare an Object

const person = { firstName: 'John', lastName: 'Doe' };

// Step 2: Destructure the Object

const { firstName, lastName } = person;

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

15

https://basescripts.com/


// Step 3: Log the Extracted Properties

console.log(`First Name: ${firstName}`);

console.log(`Last Name: ${lastName}`);

Exercise 8: Dynamic Typing

Declare a variable value and initialize it with a number. Later, reassign it with a

string and log its type.

// Step 1: Declare and Initialize Variable

let value = 42;

// Step 2: Reassign Variable with a String

value = 'Hello';

// Step 3: Log the Type

console.log(`The type of value is ${typeof value}`);

Exercise 9: Variable Naming

Declare a variable with an invalid name and observe the error message.

// Step 1: Declare a Variable with an Invalid Name

let 123abc = 'Invalid';

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

16

https://basescripts.com/


// Step 2: Expect Syntax Error

Exercise 10: Global Variables

Declare a global variable total and write a function that modifies it. Log the

variable before and after the function call.

// Step 1: Declare a Global Variable

let total = 0;

// Step 2: Function to Modify the Variable

function addToTotal(value) {

total += value;

}

// Step 3: Log Variable Before Function Call

console.log(`Total before: ${total}`);

// Step 4: Call the Function

addToTotal(10);

// Step 5: Log Variable After Function Call

console.log(`Total after: ${total}`);

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

17

https://basescripts.com/


These exercises cover various aspects of JavaScript variables, including

declaration, initialization, reassignment, scoping, constants, hoisting, template

literals, destructuring, dynamic typing, and variable naming conventions.

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

18

https://basescripts.com/

