
An Introduction to Regular Expressions
(Regex) and How They Work

What Is a Regular Expression? 2

Basic Components of Regex 3

How Regex Works 4

Compiling: 4

Searching: 4

Matching: 4

Continuation: 4

Result: 5

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

1

https://basescripts.com/

Examples of Regex in Action 5

1. Matching Words 5

2. Matching Email Addresses 5

3. Extracting Dates 6

10 Regex Examples 6

Matching Words: 6

Matching Email Addresses: 7

Matching Dates: 7

Matching URLs: 8

Matching Phone Numbers: 8

Matching IP Addresses: 9

Matching HTML Tags: 9

Matching Hashtags: 10

Matching File Extensions: 10

Matching Hexadecimal Colors: 11

Conclusion 11

Regular expressions, often abbreviated as regex or regexp, are powerful tools for

text manipulation and pattern matching. They provide a way to search, extract,

and manipulate strings of text based on specific patterns. Regex is an essential skill

for programmers, data analysts, and anyone who deals with textual data. In this

article, we will introduce you to regular expressions and show you how they work.

What Is a Regular Expression?
A regular expression is a sequence of characters that defines a search pattern. It's

like a specialized language for matching patterns within text. These patterns can

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

2

https://basescripts.com/

be simple, such as finding all occurrences of a word, or complex, like extracting

email addresses from a large document.

Regex is supported in various programming languages, including Python,

JavaScript, Java, and more. This article will focus on Python's implementation of

regular expressions.

Basic Components of Regex
Before diving into examples, let's cover some fundamental components of regular

expressions:

Literals: Characters that match themselves. For example, the regex cat will match

the string "cat."

Metacharacters: Special characters with predefined meanings. Common

metacharacters include:

.: Matches any character except a newline.

*: Matches zero or more occurrences of the preceding character or group.

+: Matches one or more occurrences of the preceding character or group.

?: Matches zero or one occurrence of the preceding character or group.

[]: Defines a character class, allowing you to specify a set of characters.

(): Groups characters together to create subpatterns.

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

3

https://basescripts.com/

How Regex Works
Regex matching is like a search operation. You provide a regex pattern, and the

matching engine scans through the text, looking for occurrences that match the

pattern. Here's a simplified overview of how regex matching works:

Compiling:

The regex pattern is compiled into a data structure that the matching engine can

use efficiently. In Python, you typically use the re.compile() function for this step.

Searching:

The matching engine starts searching the text from left to right. It checks each

character to see if it matches the pattern.

Matching:

When the matching engine finds a match, it records the position in the text where

the match begins.

Continuation:

If the pattern includes metacharacters like *, +, or ?, the matching engine

continues to find the longest match possible.

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

4

https://basescripts.com/

Result:

Once the search is complete, the matching engine returns the results, including

the matched text and its position.

Examples of Regex in Action
Let's explore some common use cases of regex with Python's re module:

1. Matching Words

text = "Regex is a powerful tool for pattern matching."

pattern = r'\b\w+\b' # Matches words

matches = re.findall(pattern, text)

print(matches) # Output: ['Regex', 'is', 'a', 'powerful', 'tool', 'for', 'pattern',

'matching']

2. Matching Email Addresses

text = "Contact us at support@example.com or info@company.com for

assistance."

pattern = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,7}\b' # Matches email

addresses

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

5

https://basescripts.com/

matches = re.findall(pattern, text)

print(matches) # Output: ['support@example.com', 'info@company.com']

3. Extracting Dates

text = "The event is scheduled for 2023-09-30. Don't miss it!"

pattern = r'\d{4}-\d{2}-\d{2}' # Matches date in YYYY-MM-DD format

matches = re.findall(pattern, text)

print(matches) # Output: ['2023-09-30']

These examples demonstrate how regex can be used to find specific patterns in

text. With regular expressions, you can tackle a wide range of text-processing

tasks efficiently.

10 Regex Examples

Matching Words:

This regex \b\w+\b matches words in a text. It uses word boundaries \b and \w+

to match one or more word characters (letters, digits, or underscores).

text = "Regex is a powerful tool for pattern matching."

pattern = r'\b\w+\b' # Matches words

matches = re.findall(pattern, text)

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

6

https://basescripts.com/

print(matches) # Output: ['Regex', 'is', 'a',

'powerful', 'tool', 'for', 'pattern', 'matching']

Matching Email Addresses:

This regex \b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,7}\b matches email

addresses. It checks for the basic structure of an email address.

text = "Contact us at support@example.com or

info@company.com for assistance."

pattern =

r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,7}\b'

Matches email addresses

matches = re.findall(pattern, text)

print(matches) # Output: ['support@example.com',

'info@company.com']

Matching Dates:

This regex \d{4}-\d{2}-\d{2} matches dates in the YYYY-MM-DD format. It looks for

four digits, a hyphen, two digits, another hyphen, and two more digits.

text = "The event is scheduled for 2023-09-30. Don't

miss it!"

pattern = r'\d{4}-\d{2}-\d{2}' # Matches date in

YYYY-MM-DD format

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

7

https://basescripts.com/

matches = re.findall(pattern, text)

print(matches) # Output: ['2023-09-30']

Matching URLs:

This regex (https?|ftp)://[^\s/$.?#].[^\s]* matches URLs that start with "http,"

"https," or "ftp."

text = "Visit our website at https://www.example.com

for more information."

pattern = r'(https?|ftp)://[^\s/$.?#].[^\s]*' #

Matches URLs

matches = re.findall(pattern, text)

print(matches) # Output: ['https://www.example.com']

Matching Phone Numbers:

This regex \(?\d{3}\)?[-.\s]?\d{3}[-.\s]?\d{4} matches U.S. phone numbers in

various formats, allowing for optional parentheses, hyphens, dots, or spaces.

text = "Contact us at (555) 123-4567 or 555-987-6543

for assistance."

pattern = r'\(?\d{3}\)?[-.\s]?\d{3}[-.\s]?\d{4}' #

Matches U.S. phone numbers

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

8

https://basescripts.com/

matches = re.findall(pattern, text)

print(matches) # Output: ['(555) 123-4567',

'555-987-6543']

Matching IP Addresses:

This regex \b\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\b matches IPv4 addresses. It looks

for four groups of one to three digits separated by periods.

text = "The server's IP address is 192.168.1.1."

pattern = r'\b\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\b' #

Matches IPv4 addresses

matches = re.findall(pattern, text)

print(matches) # Output: ['192.168.1.1']

Matching HTML Tags:

This regex <[^>]+> matches HTML tags. It looks for text enclosed in angle brackets.

html = "<p>This is a bold statement.</p>"

pattern = r'<[^>]+>' # Matches HTML tags

matches = re.findall(pattern, html)

print(matches) # Output: ['<p>', '', '</p>']

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

9

https://basescripts.com/

Matching Hashtags:

This regex #\w+ matches hashtags in social media posts. It looks for a "#" followed

by one or more word characters.

text = "Join the conversation using #Python and

#Programming."

pattern = r'#\w+' # Matches hashtags

matches = re.findall(pattern, text)

print(matches) # Output: ['#Python', '#Programming']

Matching File Extensions:

This regex \.\w+$ matches file extensions in filenames. It looks for a dot followed

by one or more word characters at the end of a string.

filenames = ["document.txt", "image.jpg", "script.py"]

pattern = r'\.\w+$' # Matches file extensions

extensions = [re.search(pattern, filename).group() for

filename in filenames]

print(extensions) # Output: ['.txt', '.jpg', '.py']

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

10

https://basescripts.com/

Matching Hexadecimal Colors:

This regex #([A-Fa-f0-9]{6}|[A-Fa-f0-9]{3}) matches hexadecimal color codes in

HTML/CSS. It looks for a "#" followed by either six or three hexadecimal

characters.

text = "The color #FF5733 is vibrant."

pattern = r'#([A-Fa-f0-9]{6}|[A-Fa-f0-9]{3})' #

Matches hexadecimal color codes

matches = re.findall(pattern, text)

print(matches) # Output: ['#FF5733']

These examples demonstrate how regular expressions can be used to find and

extract specific patterns within text data. By understanding the fundamental

components and syntax of regex, you can perform powerful text-processing tasks

efficiently.

Conclusion
Regular expressions are a valuable tool for text manipulation and pattern

matching. While they can be initially intimidating due to their syntax, mastering

regex can significantly boost your text-processing capabilities. Start with simple

patterns and gradually explore more advanced features as you become

comfortable. Practice and experimentation are key to becoming proficient in

regex.

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

11

https://basescripts.com/

