
10 advanced JavaScript questions

1. Question: What is the Event Loop in JavaScript, and how does it work? 1

2. Question: Explain closures in JavaScript. Provide an example. 2

3. Question: What is the "this" keyword in JavaScript, and how is its value
determined? 3

4. Question: What is a promise in JavaScript, and how does it differ from
callbacks? 3

5. Question: What is "hoisting" in JavaScript, and how does it work? 4

6. Question: Explain the concepts of "currying" and "partial application" in
JavaScript. 5

7. Question: What is the purpose of the "use strict" directive in JavaScript? 5

8. Question: Explain the concept of "prototypal inheritance" in JavaScript. 6

9. Question: What are generators in JavaScript, and how do they work? 6

10. Question: What is the difference between "call" and "apply" in JavaScript? 8

1. Question: What is the Event Loop in JavaScript, and
how does it work?

Answer: The Event Loop is a fundamental part of JavaScript's concurrency model.

It's responsible for managing the execution of asynchronous code. JavaScript is

single-threaded, meaning it can only execute one task at a time, but it can

perform asynchronous operations like I/O in a non-blocking way.

Explanation: The Event Loop constantly checks the call stack (the place where

synchronous code is executed) and the message queue (where asynchronous tasks

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

1

https://basescripts.com/

are queued). If the call stack is empty, the Event Loop takes the first task from the

message queue and pushes it onto the call stack for execution. This process

continues, ensuring that asynchronous tasks are processed without blocking the

main thread.

2. Question: Explain closures in JavaScript. Provide an
example.

Answer: A closure is a function that "closes over" variables from its outer

(enclosing) function scope. It retains access to those variables even after the outer

function has completed.

Explanation: Here's an example:

function outer() {

const outerVar = 'I am from the outer function';

return function inner() {

console.log(outerVar);

};

}

const innerFunction = outer();

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

2

https://basescripts.com/

innerFunction(); // Outputs: "I am from the outer

function"

In this example, the inner function closes over the outerVar variable, allowing it to

access outerVar even after the outer function has finished executing.

3. Question: What is the "this" keyword in JavaScript, and
how is its value determined?

Answer: The this keyword refers to the context in which a function is executed. Its

value is determined dynamically at runtime based on how a function is called.

Explanation: The value of this can be:

In a function called as a method of an object, this refers to the object itself.

In a simple function call, this typically refers to the global object (e.g., window in a

browser).

In a constructor function, this refers to the newly created object.

When using .call() or .apply(), you can explicitly set the value of this.

4. Question: What is a promise in JavaScript, and how
does it differ from callbacks?

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

3

https://basescripts.com/

Answer: A promise is an object that represents the eventual completion (or

failure) of an asynchronous operation. It provides a cleaner and more structured

way to handle asynchronous tasks compared to traditional callback functions.

Explanation: Promises have two states: "fulfilled" (resolved) and "rejected"

(failed). You can attach .then() and .catch() handlers to a promise to handle

success and error cases. Promises help avoid callback hell and make asynchronous

code more readable and maintainable.

5. Question: What is "hoisting" in JavaScript, and how
does it work?

Answer: Hoisting is a JavaScript behavior where variable and function declarations

are moved to the top of their containing scope during compilation. However, only

declarations are hoisted, not initializations.

Explanation: For example:

console.log(myVar); // Output: undefined

var myVar = 10;

In this code, myVar is hoisted to the top of the scope, but it's not yet assigned a

value. That's why console.log(myVar) doesn't throw an error but logs undefined.

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

4

https://basescripts.com/

6. Question: Explain the concepts of "currying" and
"partial application" in JavaScript.

Answer: Currying is the process of converting a function that takes multiple

arguments into a series of functions that each take a single argument. Partial

application is a similar concept where a function is partially applied to some of its

arguments, producing a new function.

Explanation: Here's an example of currying:

const add = a => b => a + b;

const add5 = add(5);

const result = add5(10); // Result is 15

In this example, add is a curried function that takes two arguments. We partially

apply it with 5, resulting in a new function add5 that takes a single argument,

which adds 5 to it.

7. Question: What is the purpose of the "use strict"
directive in JavaScript?

Answer: "use strict" is a pragma that enables strict mode, which helps catch

common coding mistakes and "unsafe" actions in JavaScript. It enforces better

coding practices and makes the code less error-prone.

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

5

https://basescripts.com/

Explanation: In strict mode, certain actions that were previously silent errors

become explicit errors, like assigning values to undeclared variables or using

reserved keywords. It encourages better coding practices and enhances

performance in some cases.

8. Question: Explain the concept of "prototypal
inheritance" in JavaScript.

Answer: In JavaScript, objects can inherit properties and methods from other

objects through their prototype chain. Prototypal inheritance is a mechanism

where an object can inherit from another object, serving as the basis for creating

more complex objects.

Explanation: When a property or method is accessed on an object, JavaScript will

first look on the object itself. If it's not found, it will traverse up the prototype

chain to find it in the object's prototype, and so on. This allows for a flexible and

dynamic way to create and share functionality among objects.

9. Question: What are generators in JavaScript, and how
do they work?

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

6

https://basescripts.com/

Answer: Generators are a type of function that can be paused and resumed. They

allow you to control the flow of execution manually, which is useful for

asynchronous operations and creating iterators.

Explanation: Here's a simple example:

function* countUpTo(n) {

let count = 1;

while (count <= n) {

yield count;

count++;

}

}

const counter = countUpTo(5);

console.log(counter.next().value); // Output: 1

console.log(counter.next().value); // Output: 2

// ...

The yield keyword allows the function to pause and resume, making it handy for

asynchronous tasks and lazy evaluation.

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

7

https://basescripts.com/

10. Question: What is the difference between "call" and
"apply" in JavaScript?
Answer: Both `call` and `apply` are methods used to invoke functions with a

specific context (the value of `this`) and a set of arguments. The key difference is

in how arguments are passed to the function.

Explanation:

- `call`: Arguments are passed as a comma-separated

list. For example, `func.call(context, arg1, arg2,

arg3)`.

- `apply`: Arguments are passed as an array or

array-like object. For example, `func.apply(context,

[arg1, arg2, arg3])`.

Which one to use depends on the function and how its arguments are structured.

These advanced JavaScript questions cover a range of important topics.

Understanding these concepts can greatly improve your ability to work with

JavaScript effectively.

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

8

https://basescripts.com/

