
Prototypes in JavaScript: A Comprehensive
Guide

Key Concepts: 2

Prototype Chain: 2

Constructor Function: 3

Coding Examples: 3

1. Creating a Prototype: 3

2. Inheriting from Prototypes: 4

3. Built-in Object Prototypes: 5

Summary: 6

Coding Exercises 6

Exercise 1: Creating a Basic Prototype 6

Exercise 2: Adding a Method to the Prototype 7

Exercise 3: Inheriting Properties 7

Exercise 4: Inheriting Methods 8

Exercise 5: Adding a Specific Method 8

Exercise 6: Extending Built-in Prototypes 9

Exercise 7: Adding a Static Method 9

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

1

https://basescripts.com/


Exercise 8: Using Prototypes for Efficiency 10

Exercise 9: Dynamic Prototype Property 11

Exercise 10: Prototype Chain Exploration 12

Quiz questions and answers 13

Q1: What is the purpose of prototypes in JavaScript? 13

Q2: How do you create a prototype in JavaScript? 14

Q3: What does the prototype property of a function contain? 14

Q4: How do you add a method to a prototype? 14

Q5: Inheriting properties in JavaScript is achieved through: 15

Q6: What is the purpose of Object.create() in prototype-based inheritance? 15

Q7: How do you call a method from a parent prototype when using
inheritance? 15

Q8: What does the Array.prototype property contain? 16

Q9: What is a static method in a prototype? 16

d) A method for handling errors 16

Q10: How can you create a static property for a prototype? 16

Overview:

In JavaScript, prototypes play a crucial role in the inheritance

model. Understanding prototypes is essential for mastering

JavaScript and building scalable, efficient code.

Key Concepts:

Prototype Chain:

Every JavaScript object has a prototype, and this forms a chain.

Objects inherit properties and methods from their prototype.

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

2

https://basescripts.com/


Prototype Property:

The prototype property is inherent to all JavaScript functions.

It allows the creation of shared properties and methods among

instances.

Constructor Function:

Objects are created using constructor functions.

The prototype property of the constructor becomes the prototype

of its instances.

Coding Examples:

1. Creating a Prototype:

function Person(name, age) {

this.name = name;

this.age = age;

}

// Adding a method to the prototype

Person.prototype.greet = function() {

console.log(`Hello, my name is ${this.name}!`);

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

3

https://basescripts.com/


};

// Creating instances

const person1 = new Person("Alice", 25);

const person2 = new Person("Bob", 30);

// Using the prototype method

person1.greet(); // Outputs: Hello, my name is Alice!

person2.greet(); // Outputs: Hello, my name is Bob!

2. Inheriting from Prototypes:

function Student(name, age, grade) {

// Inheriting properties from the Person prototype

Person.call(this, name, age);

this.grade = grade;

}

// Inheriting methods from the Person prototype

Student.prototype = Object.create(Person.prototype);

// Adding a method specific to Student

Student.prototype.study = function() {

console.log(`${this.name} is studying hard!`);

};

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

4

https://basescripts.com/


// Creating a Student instance

const student1 = new Student("Charlie", 22, "A");

// Using inherited and specific methods

student1.greet(); // Outputs: Hello, my name is Charlie!

student1.study(); // Outputs: Charlie is studying hard!

3. Built-in Object Prototypes:

// Extending the Array prototype

Array.prototype.doubleValues = function() {

return this.map(item => item * 2);

};

const numbers = [1, 2, 3, 4];

// Using the extended method

const doubledNumbers = numbers.doubleValues();

console.log(doubledNumbers); // Outputs: [2, 4, 6, 8]

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

5

https://basescripts.com/


Summary:
Prototypes are at the core of JavaScript's object-oriented nature.

They enable the creation of efficient, reusable code through

inheritance.

Coding Exercises
10 coding exercises focused on prototypes in JavaScript, along

with detailed steps, descriptions, and solutions.

Exercise 1: Creating a Basic Prototype

Description: Create a prototype named Car with properties make

and model. Create an instance and log the properties.

Solution:

function Car(make, model) {

this.make = make;

this.model = model;

}

var myCar = new Car("Toyota", "Camry");

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

6

https://basescripts.com/


console.log(myCar.make); // Outputs: Toyota

console.log(myCar.model); // Outputs: Camry

Exercise 2: Adding a Method to the Prototype

Description: Extend the Car prototype with a method startEngine

that logs "Engine started!".

Solution:

Car.prototype.startEngine = function() {

console.log("Engine started!");

};

myCar.startEngine(); // Outputs: Engine started!

Exercise 3: Inheriting Properties

Description: Create a prototype SportsCar that inherits from Car

and adds a property topSpeed.

Solution:

function SportsCar(make, model, topSpeed) {

// Inheriting properties from Car

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

7

https://basescripts.com/


Car.call(this, make, model);

this.topSpeed = topSpeed;

}

var mySportsCar = new SportsCar("Ferrari", "458 Italia", 200);

console.log(mySportsCar.make); // Outputs: Ferrari

console.log(mySportsCar.topSpeed); // Outputs: 200

Exercise 4: Inheriting Methods

Description: Inherit the startEngine method from Car in the

SportsCar prototype.

Solution:

SportsCar.prototype = Object.create(Car.prototype);

mySportsCar.startEngine(); // Outputs: Engine started!

Exercise 5: Adding a Specific Method

Description: Add a method revEngine to the SportsCar prototype

that logs "Vroom Vroom!".

Solution:

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

8

https://basescripts.com/


SportsCar.prototype.revEngine = function() {

console.log("Vroom Vroom!");

};

mySportsCar.revEngine(); // Outputs: Vroom Vroom!

Exercise 6: Extending Built-in Prototypes

Description: Extend the Array prototype with a method sum that

calculates the sum of all elements.

Solution:

Array.prototype.sum = function() {

return this.reduce((acc, num) => acc + num, 0);

};

var numbers = [1, 2, 3, 4, 5];

console.log(numbers.sum()); // Outputs: 15

Exercise 7: Adding a Static Method

Description: Add a static method getTotalCars to the Car

prototype that logs the total number of cars created.

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

9

https://basescripts.com/


Solution:

Car.totalCars = 0;

Car.prototype.getTotalCars = function() {

console.log(`Total cars created: ${Car.totalCars}`);

};

var newCar1 = new Car("Honda", "Civic");

Car.totalCars++;

var newCar2 = new Car("Ford", "Mustang");

Car.totalCars++;

newCar2.getTotalCars(); // Outputs: Total cars created: 2

Exercise 8: Using Prototypes for Efficiency

Description: Create a function calculateSquare that calculates the

square of a number. Use a prototype to reuse the function across

instances.

Solution:

function Calculator(base) {

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

10

https://basescripts.com/


this.base = base;

}

Calculator.prototype.calculateSquare = function() {

return this.base * this.base;

};

var calc1 = new Calculator(5);

var calc2 = new Calculator(8);

console.log(calc1.calculateSquare()); // Outputs: 25

console.log(calc2.calculateSquare()); // Outputs: 64

Exercise 9: Dynamic Prototype Property

Description: Create a function Person with properties name and

age. Add a dynamic prototype property isAdult based on age.

Solution:

function Person(name, age) {

this.name = name;

this.age = age;

}

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

11

https://basescripts.com/


Person.prototype.isAdult = function() {

return this.age >= 18;

};

var adultPerson = new Person("Alice", 25);

console.log(adultPerson.isAdult()); // Outputs: true

Exercise 10: Prototype Chain Exploration

Description: Explore the prototype chain of an object. Create

instances of Person, Student (inheriting from Person), and

Graduate (inheriting from Student).

Solution:

function Student(name, age, grade) {

Person.call(this, name, age);

this.grade = grade;

}

Student.prototype = Object.create(Person.prototype);

function Graduate(name, age, grade, specialization) {

Student.call(this, name, age, grade);

this.specialization = specialization;

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

12

https://basescripts.com/


}

Graduate.prototype = Object.create(Student.prototype);

var person = new Person("John", 25);

var student = new Student("Jane", 20, "A");

var graduate = new Graduate("Jack", 22, "B", "Computer

Science");

console.log(graduate.name); // Outputs: Jack

console.log(graduate.grade); // Outputs: B

console.log(graduate.specialization); // Outputs: Computer

Science

These exercises cover a range of scenarios involving prototypes in

JavaScript. Practice them to enhance your understanding of

prototype-based inheritance!

Quiz questions and answers

Questions:

Q1: What is the purpose of prototypes in JavaScript?

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

13

https://basescripts.com/


a) To create static properties

b) To create shared properties and methods among objects

c) To define constants

d) To handle errors in code

Q2: How do you create a prototype in JavaScript?

a) Using the prototype keyword

b) By declaring a new function

c) Automatically for every object

d) Only for built-in objects

Q3: What does the prototype property of a function contain?

a) The function's source code

b) Shared properties and methods for instances created by the

function

c) The function's parameters

d) The function's return value

Q4: How do you add a method to a prototype?

a) Using the addMethod function

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

14

https://basescripts.com/


b) By modifying the prototype directly

c) Only within the constructor function

d) By creating a new instance method

Q5: Inheriting properties in JavaScript is achieved through:

a) Static properties

b) Prototype chain

c) Object literals

d) Constructor properties

Q6: What is the purpose of Object.create() in prototype-based

inheritance?

a) To create a new object with the same properties

b) To create a new object with the same prototype

c) To add a method to an existing object

d) To check if an object has a prototype

Q7: How do you call a method from a parent prototype when

using inheritance?

a) callMethod()

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

15

https://basescripts.com/


b) parentMethod()

c) Using the super keyword

d) parent.method()

Q8: What does the Array.prototype property contain?

a) Array methods and properties

b) Static methods for arrays

c) Shared properties for array instances

d) The source code of the array constructor

Q9: What is a static method in a prototype?

a) A method specific to an instance

b) A method shared among instances

c) A method added to a constructor

d) A method for handling errors

Q10: How can you create a static property for a prototype?

a) By modifying the prototype directly

b) Using the static keyword

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

16

https://basescripts.com/


c) Only within the constructor function

d) By creating a new instance property

Answers:

Answer: b) To create shared properties and methods among

objects

Answer: b) By declaring a new function

Answer: b) Shared properties and methods for instances created

by the function

Answer: b) By modifying the prototype directly

Answer: b) Prototype chain

Answer: b) To create a new object with the same prototype

Answer: c) Using the super keyword

Answer: a) Array methods and properties

Answer: c) A method added to a constructor

Answer: a) By modifying the prototype directly

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

17

https://basescripts.com/

