
Apps Script Code Exercises

📆 Enhance Your
Google Calendar Skills
with Apps Script!📆

📆 Enhance Your Google Calendar Skills with Apps Script!📆 1

Exercise 1: Create a Calendar Event 2

Exercise 2: Fetch Calendar Events 3

Exercise 3: Update an Event 3

Exercise 4: Delete a Calendar Event 4

Exercise 5: Create Recurring Events 5

Exercise 6: Send Invitations for an Event 5

Exercise 7: Working with Event Reminders 6

Exercise 8: Change Event Visibility 7

Exercise 9: Working with Multiple Calendars 7

Exercise 10: Create a Calendar Event with Advanced Options 8

📆 Enhance Your Google Calendar Skills with Apps Script!
📆

Learn more about JavaScript with Examples and Source Code. Google Apps Script
and Workspace Laurence Svekis Courses https://basescripts.com/

1

https://basescripts.com/


🚀 Excited to unveil 10 dynamic coding exercises for mastering Google Apps

Script's Calendar Service (CalendarApp)! From creating simple events to managing

complex calendars, these exercises cover a wide range of functionalities.

👨‍💻Whether you're automating meeting schedules, setting up reminders, or

handling multiple calendars, these exercises are designed to elevate your

proficiency and streamline your calendar management.

💡 Embrace the power of automation and transform your Google Calendar

experience!

Exercise 1: Create a Calendar Event
Objective: Learn to create a basic event in a Google Calendar.

Explanation: This exercise introduces creating a new event in a user's default

calendar.

Code:

function createEvent() {

var calendar = CalendarApp.getDefaultCalendar();

var startTime = new Date('March 15, 2024 10:00:00');

var endTime = new Date('March 15, 2024 11:00:00');

Learn more about JavaScript with Examples and Source Code. Google Apps Script
and Workspace Laurence Svekis Courses https://basescripts.com/

2

https://basescripts.com/


var event = calendar.createEvent('Meeting', startTime, endTime);

Logger.log('Event ID: ' + event.getId());

}

Exercise 2: Fetch Calendar Events
Objective: Learn to retrieve events from a specific date range.

Explanation: This exercise teaches how to fetch calendar events within a given

date range.

Code:

function fetchEvents() {

var calendar = CalendarApp.getDefaultCalendar();

var startDate = new Date('March 1, 2024');

var endDate = new Date('March 31, 2024');

var events = calendar.getEvents(startDate, endDate);

for (var i = 0; i < events.length; i++) {

Logger.log('Event: ' + events[i].getTitle());

}

}

Exercise 3: Update an Event
Objective: Understand how to update an existing calendar event.

Learn more about JavaScript with Examples and Source Code. Google Apps Script
and Workspace Laurence Svekis Courses https://basescripts.com/

3

https://basescripts.com/


Explanation: This exercise focuses on modifying the details of an existing event.

Code:

function updateEvent() {

var calendar = CalendarApp.getDefaultCalendar();

var events = calendar.getEventsForDay(new Date('March 15, 2024'));

if (events.length > 0) {

var event = events[0];

event.setTitle('Updated Meeting Title');

}

}

Exercise 4: Delete a Calendar Event
Objective: Learn to delete a calendar event.

Explanation: This exercise shows how to programmatically remove an event from

a calendar.

Code:

function deleteEvent() {

var calendar = CalendarApp.getDefaultCalendar();

var events = calendar.getEventsForDay(new Date('March 15, 2024'));

if (events.length > 0) {

var event = events[0];

Learn more about JavaScript with Examples and Source Code. Google Apps Script
and Workspace Laurence Svekis Courses https://basescripts.com/

4

https://basescripts.com/


event.deleteEvent();

}

}

Exercise 5: Create Recurring Events
Objective: Understand how to set up recurring events.

Explanation: This exercise demonstrates creating events that recur on a specific

schedule.

Code:

function createRecurringEvent() {

var calendar = CalendarApp.getDefaultCalendar();

var startTime = new Date('April 1, 2024 08:00:00');

var endTime = new Date('April 1, 2024 09:00:00');

var recurrence = CalendarApp.newRecurrence().addWeeklyRule().until(new

Date('June 1, 2024'));

var event = calendar.createEventSeries('Weekly Meeting', startTime, endTime,

recurrence);

Logger.log('Event Series ID: ' + event.getId());

}

Exercise 6: Send Invitations for an Event
Objective: Learn to invite guests to an event.

Learn more about JavaScript with Examples and Source Code. Google Apps Script
and Workspace Laurence Svekis Courses https://basescripts.com/

5

https://basescripts.com/


Explanation: This exercise focuses on adding guests to an event and sending them

invitations.

Code:

function inviteGuests() {

var calendar = CalendarApp.getDefaultCalendar();

var startTime = new Date('March 20, 2024 15:00:00');

var endTime = new Date('March 20, 2024 16:00:00');

var event = calendar.createEvent('Team Meeting', startTime, endTime);

event.addGuest('example@email.com');

}

Exercise 7: Working with Event Reminders
Objective: Understand how to manage event reminders.

Explanation: This exercise shows how to add, update, and remove reminders for

an event.

Code:

function manageReminders() {

var calendar = CalendarApp.getDefaultCalendar();

var event = calendar.getEventsForDay(new Date())[0];

event.removeAllReminders();

Learn more about JavaScript with Examples and Source Code. Google Apps Script
and Workspace Laurence Svekis Courses https://basescripts.com/

6

https://basescripts.com/


event.addPopupReminder(30); // 30 minutes before

}

Exercise 8: Change Event Visibility
Objective: Learn to change the visibility of a calendar event.

Explanation: This exercise demonstrates how to set an event's visibility (public,

private).

Code:

function changeEventVisibility() {

var calendar = CalendarApp.getDefaultCalendar();

var event = calendar.getEventsForDay(new Date())[0];

event.setVisibility(CalendarApp.Visibility.PRIVATE);

}

Exercise 9: Working with Multiple Calendars
Objective: Learn to interact with multiple calendars in a Google account.

Explanation: This exercise focuses on retrieving and working with different

calendars within a user's Google account.

Code:

function listCalendars() {

Learn more about JavaScript with Examples and Source Code. Google Apps Script
and Workspace Laurence Svekis Courses https://basescripts.com/

7

https://basescripts.com/


var calendars = CalendarApp.getAllCalendars();

for (var i = 0; i < calendars.length; i++) {

Logger.log('Calendar: ' + calendars[i].getName());

}

}

Exercise 10: Create a Calendar Event with Advanced
Options
Objective: Understand how to use advanced options when creating an event.

Explanation: This exercise teaches how to create an event with additional details

like location and description.

Code:

function createAdvancedEvent() {

var calendar = CalendarApp.getDefaultCalendar();

var startTime = new Date('April 5, 2024 10:00:00');

var endTime = new Date('April 5, 2024 11:00:00');

var options = {

location: 'Conference Room',

description: 'Discuss project milestones'

};

var event = calendar.createEvent('Project Meeting', startTime, endTime, options);

Logger.log('Event ID: ' + event.getId());

Learn more about JavaScript with Examples and Source Code. Google Apps Script
and Workspace Laurence Svekis Courses https://basescripts.com/

8

https://basescripts.com/


}

Learn more about JavaScript with Examples and Source Code. Google Apps Script
and Workspace Laurence Svekis Courses https://basescripts.com/

9

https://basescripts.com/

