
CODE EXERCISE
World of JavaScript
Closures
CODING EXERCISES TEST YOUR SKILLS

Introduction🚀 Launching into the World of JavaScript Closures!🚀 1

Exercise 1: Basic Closure 3

Exercise 2: Counter Function 3

Exercise 3: Remembering Arguments 4

Exercise 4: Private Variables 5

Exercise 5: Function Factories 6

Exercise 6: Caching/Memoization 7

Exercise 7: Encapsulation with Closures 8

Exercise 8: Loop and Closures 10

Exercise 9: Event Listeners and Closures 11

Exercise 10: Currying with Closures 12

Introduction🚀 Launching into the World of JavaScript
Closures!🚀
Series of 10 meticulously designed JavaScript exercises, exclusively focusing on the

concept of closures - a core aspect of JavaScript that often perplexes even

seasoned developers.🤓💻

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

1

https://basescripts.com/

Each exercise is thoughtfully crafted to not only challenge but also to enlighten

you about the different facets of closures. They range from basic implementations

to more complex scenarios, ensuring a comprehensive understanding of the topic.

🌟

Here's a sneak peek at what's included:

● Basic Closure Mechanics

● Implementing Counter Functions

● Argument Remembering Functions

● Creating Private Variables

● Function Factories

● Caching with Closures (Memoization)

● Data Encapsulation Techniques

● Handling Loops and Closures

● Event Listeners using Closures

● Currying Functions

Whether you're a budding programmer eager to crack the mystery of closures or a

pro developer looking to brush up your skills, these exercises are tailored for you.

They are perfect for interview prep, coding practice, or even as a quick refresher!

📘

Exercise 1: Basic Closure
Problem Statement:

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

2

https://basescripts.com/

Create a function createGreeting that takes a name and returns another function.

The returned function should return a greeting string when called.

Hint/Explanation:

A closure is a function that remembers the variables from the place where it is

defined, regardless of where it is executed later.

Solution:

function createGreeting(name) {

return function() {

return `Hello, ${name}!`;

};

}

const greetAlice = createGreeting("Alice");

console.log(greetAlice()); // "Hello, Alice!"

Exercise 2: Counter Function
Problem Statement:

Create a function createCounter that returns a function. When the returned

function is called, it should return an incremented value starting from 1.

Hint/Explanation:

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

3

https://basescripts.com/

The inner function can access and modify variables defined in the outer function.

Solution:

function createCounter() {

let count = 0;

return function() {

count += 1;

return count;

};

}

const counter = createCounter();

console.log(counter()); // 1

console.log(counter()); // 2

Exercise 3: Remembering Arguments
Problem Statement:

Create a function rememberArgs that takes two arguments and returns a function.

When the returned function is called, it should return the sum of the arguments

passed to rememberArgs.

Hint/Explanation:

Closures keep track of the variables from their containing scope.

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

4

https://basescripts.com/

Solution:

function rememberArgs(a, b) {

return function() {

return a + b;

};

}

const adder = rememberArgs(2, 3);

console.log(adder()); // 5

Exercise 4: Private Variables
Problem Statement:

Create a function createBankAccount that initializes a balance (a private variable)

and returns an object with two methods deposit and withdraw, manipulating the

balance.

Hint/Explanation:

Closures allow for private variables that cannot be accessed directly from outside

the function.

Solution:

function createBankAccount(initialBalance) {

let balance = initialBalance;

return {

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

5

https://basescripts.com/

deposit(amount) {

balance += amount;

return balance;

},

withdraw(amount) {

if (amount > balance) {

return "Insufficient funds";

}

balance -= amount;

return balance;

}

};

}

const account = createBankAccount(100);

console.log(account.deposit(50)); // 150

console.log(account.withdraw(70)); // 80

Exercise 5: Function Factories
Problem Statement:

Create a function multiplier that takes a number x and returns a new function. The

returned function should take a number y and return the product of x and y.

Hint/Explanation:

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

6

https://basescripts.com/

This pattern, where a function is used to create new functions, is a powerful use

of closures.

Solution:

function multiplier(x) {

return function(y) {

return x * y;

};

}

const double = multiplier(2);

console.log(double(5)); // 10

Exercise 6: Caching/Memoization
Problem Statement:

Implement a simple caching mechanism for a function that calculates the factorial

of a number. Use closures to remember previously calculated results.

Hint/Explanation:

Closures can be used to implement memoization, an optimization technique to

speed up function calls by caching results.

Solution:

function factorial() {

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

7

https://basescripts.com/

const cache = {};

return function innerFact(n) {

if (n in cache) {

return cache[n];

}

if (n === 0 || n === 1) {

return 1;

}

const result = n * innerFact(n - 1);

cache[n] = result;

return result;

};

}

const fact = factorial();

console.log(fact(5)); // 120

console.log(fact(6)); // 720, faster due to caching

Exercise 7: Encapsulation with Closures
Problem Statement:

Create a function createPerson that takes a name and age and returns an object

with methods to get and set the name and age. The name and age should not be

directly accessible.

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

8

https://basescripts.com/

Hint/Explanation:

This exercise demonstrates how closures can be used to encapsulate and protect

data.

Solution:

function createPerson(name, age) {

let privateName = name;

let privateAge = age;

return {

getName() {

return privateName;

},

setName(newName) {

privateName = newName;

},

getAge() {

return privateAge;

},

setAge(newAge) {

privateAge = newAge;

}

};

}

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

9

https://basescripts.com/

const person = createPerson("Alice", 25);

console.log(person.getName()); // Alice

person.setName("Bob");

console.log(person.getName()); // Bob

Exercise 8: Loop and Closures
Problem Statement:

Create a function createFunctions that returns an array of functions. Each

function, when called, should return its index in the array.

Hint/Explanation:

This exercise is tricky due to how closures and loops interact, especially in regards

to variable scoping.

Solution:

function createFunctions(n) {

const functions = [];

for (let i = 0; i < n; i++) {

functions.push((function(index) {

return function() {

return index;

};

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

10

https://basescripts.com/

})(i));

}

return functions;

}

const funcs = createFunctions(3);

console.log(funcs[0]()); // 0

console.log(funcs[1]()); // 1

console.log(funcs[2]()); // 2

Exercise 9: Event Listeners and Closures
Problem Statement:

Create a function setupButtons that sets up event listeners on buttons. Each

button, when clicked, should alert its position in a list.

Hint/Explanation:

This exercise shows how closures can be useful in event handling, allowing access

to the loop index in event listeners.

Solution:

function setupButtons() {

const buttons = document.querySelectorAll("button");

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

11

https://basescripts.com/

for (let i = 0; i < buttons.length; i++) {

buttons[i].addEventListener("click", function() {

alert(`Button ${i + 1} clicked`);

});

}

}

// Call setupButtons() after the DOM has loaded

Exercise 10: Currying with Closures
Problem Statement:

Implement a curry function that takes a binary function and an argument, and

returns a new function that can take a second argument.

Hint/Explanation:

Currying is the technique of converting a function that takes multiple arguments

into a sequence of functions that each take a single argument.

Solution:

function curry(binaryFunc, firstArg) {

return function(secondArg) {

return binaryFunc(firstArg, secondArg);

};

}

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

12

https://basescripts.com/

const add = (a, b) => a + b;

const addFive = curry(add, 5);

console.log(addFive(3)); // 8

These exercises cover various aspects and applications of closures in JavaScript,

providing a mix of practical and conceptual learning opportunities. They can be

adapted for different learning levels and are ideal for both instructional and

self-paced learning environments.

Don't hesitate to reach out if you have questions or need more insights into any of

these exercises. Let's embark on this learning journey together and unravel the

potential of JavaScript closures!💡🌐

#JavaScript #Closures #WebDevelopment #CodingChallenges #Programming

#LearningToCode #JavaScriptDeveloper #FrontEndDevelopment

#SoftwareEngineering #CodingIsFun #TechCommunity #CodeNewbies

#100DaysOfCode #DevCommunity #LearnJavaScript #JavaScriptTips

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

13

https://basescripts.com/

