
CODE EXERCISE
🚀 Mastering
JavaScript Prototype
and Inheritance!🚀
CODING EXERCISES TEST YOUR SKILLS

🚀Mastering JavaScript Prototype and Inheritance!🚀 1

Exercise 1: Understanding Prototype 2

Exercise 2: Prototype Chain 3

Exercise 3: Overriding Prototype Properties 4

Exercise 4: Prototype Method 4

Exercise 5: Constructor Property 5

Exercise 6: Checking Instance of a Prototype 6

Exercise 7: Extending Prototype Functionality 6

Exercise 8: Prototype Inheritance 7

Exercise 9: Adding to Prototype in Constructor 8

🚀Mastering JavaScript Prototype and Inheritance!🚀

Calling all JavaScript developers! Let's dive deep into the world of prototypes and

inheritance with these 10 insightful exercises.🌟💻

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

1

https://basescripts.com/


Prototypes and inheritance are at the core of JavaScript's object-oriented nature.

These exercises are designed to help you understand, practice, and master these

fundamental concepts.🧬

Here's a sneak peek of what you'll explore:

● Prototype Chains and Property Lookups

● Overriding Prototype Properties

● Adding Methods to Prototypes

● The constructor Property

● Checking Instances with instanceof

● Extending Built-In Objects

● Prototype Inheritance

● Adding to Prototypes Inside Constructors

● Determining Prototype Chain Length

Whether you're new to JavaScript or a seasoned pro, these exercises provide

valuable insights into how objects inherit and share behavior in JavaScript.💡🌐

Exercise 1: Understanding Prototype
Problem Statement:

Create an object and add a new property to its prototype.

Hint/Explanation:

Every JavaScript object has a prototype. A prototype is also an object. All

JavaScript objects inherit their properties and methods from their prototype.

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

2

https://basescripts.com/


Solution:

const obj = {};

Object.prototype.greet = 'Hello';

console.log(obj.greet); // "Hello"

Exercise 2: Prototype Chain
Problem Statement:

Create a prototype chain and access a property from the highest level prototype.

Hint/Explanation:

In a prototype chain, properties are looked up step by step from the immediate

prototype up to the Object prototype.

Solution:

function Grandparent() {}

Grandparent.prototype.familyName = "Smith";

function Parent() {}

Parent.prototype = Object.create(Grandparent.prototype);

function Child() {}

Child.prototype = Object.create(Parent.prototype);

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

3

https://basescripts.com/


const child = new Child();

console.log(child.familyName); // "Smith"

Exercise 3: Overriding Prototype Properties
Problem Statement:

Create an object and override one of its inherited prototype properties.

Hint/Explanation:

Properties directly on an object take precedence over those on its prototype.

Solution:

function MyObject() {}

MyObject.prototype.color = "red";

const obj = new MyObject();

console.log(obj.color); // "red"

obj.color = "blue";

console.log(obj.color); // "blue" (overridden)

Exercise 4: Prototype Method
Problem Statement:

Add a method to an object’s prototype and call it on an instance of the object.

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

4

https://basescripts.com/


Hint/Explanation:

Methods added to an object's prototype are accessible to all instances of that

object.

Solution:

function Animal(name) {

this.name = name;

}

Animal.prototype.speak = function() {

return `${this.name} makes a noise.`;

};

const dog = new Animal("Dog");

console.log(dog.speak()); // "Dog makes a noise."

Exercise 5: Constructor Property
Problem Statement:

Examine and explain the constructor property of an object.

Hint/Explanation:

The constructor property references the constructor function that created the

instance.

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

5

https://basescripts.com/


Solution:

function Person(name) {

this.name = name;

}

const person = new Person("Alice");

console.log(person.constructor === Person); // true

Exercise 6: Checking Instance of a Prototype
Problem Statement:

Check if an object is an instance of a specific constructor function.

Hint/Explanation:

The instanceof operator tests whether the prototype property of a constructor

appears anywhere in the prototype chain of an object.

Solution:

function Car() {}

const myCar = new Car();

console.log(myCar instanceof Car); // true

Exercise 7: Extending Prototype Functionality
Problem Statement:

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

6

https://basescripts.com/


Extend the functionality of a built-in JavaScript object using its prototype.

Hint/Explanation:

You can add new properties or methods to built-in JavaScript constructors like

Array, Object, String, etc.

Solution:

String.prototype.shout = function() {

return `${this.toUpperCase()}!`;

};

console.log("hello".shout()); // "HELLO!"

Exercise 8: Prototype Inheritance
Problem Statement:

Create two constructor functions, with the second one inheriting from the first

one’s prototype.

Hint/Explanation:

Prototype inheritance allows an object to inherit all the methods and properties

from another object.

Solution:

function Vehicle(type) {

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

7

https://basescripts.com/


this.type = type;

}

Vehicle.prototype.start = function() {

return `Starting a ${this.type}`;

};

function Car() {

Vehicle.call(this, 'car');

}

Car.prototype = Object.create(Vehicle.prototype);

Car.prototype.constructor = Car;

const myCar = new Car();

console.log(myCar.start()); // "Starting a car"

Exercise 9: Adding to Prototype in Constructor
Problem Statement:

Add a method to an object's prototype inside its constructor function.

Hint/Explanation:

While not a common practice, it's possible to add methods to an object's

prototype inside the constructor function.

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

8

https://basescripts.com/


Solution:

function Box() {

Box.prototype.open = function() {

return "Opened the box";

};

}

const box = new Box();

console.log(box.open()); // "Opened the box"

Dive into these exercises, challenge your skills, and share your solutions or

insights. Let's discuss how prototypes and inheritance impact your JavaScript

development. If you have questions or additional tips, feel free to join the

conversation in the comments below. Happy coding!🚀🤝

#JavaScript #Prototype #Inheritance #WebDevelopment #Programming

#CodingExercises #JavaScriptLearning #SoftwareDevelopment

#FrontEndDevelopment #BackEndDevelopment #FullStackDeveloper

#TechCommunity #CodeNewbies #Developers #LearnToCode #CodingIsFun

#JavaScriptTips #TechEducation #CodingChallenges #SoftwareEngineering

#ObjectOrientedProgramming

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

9

https://basescripts.com/

