
CODE EXERCISE
Asynchronous

JavaScript Coding
Exercises

CODING EXERCISES TEST YOUR SKILLS

Asynchronous JavaScript Coding Exercises 1

Exercise 1: Basic Callback Function 2

Exercise 2: Promise Basics 3

Exercise 3: Handling Promise Rejection 3

Exercise 4: Chaining Promises 4

Exercise 5: Async/Await Basic 4

Exercise 6: Error Handling with Async/Await 5

Exercise 7: Using Promise.all 6

Exercise 8: Async/Await with Fetch API 6

Exercise 9: Custom Async Iterator 7

Exercise 10: Handling Multiple Fetch Requests 8

Asynchronous JavaScript Coding Exercises
🌈 Dive Deep into Asynchronous JavaScript with Our Latest Coding Exercises!🚀

Unlock the power of asynchronous programming in JavaScript with our collection

of 10 engaging coding exercises. From mastering callbacks and promises to

leveraging the elegant async/await syntax, these exercises are designed to equip

you with the skills needed to write efficient, non-blocking JavaScript code.

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

1

https://basescripts.com/


Perfect for both beginners and seasoned developers, these exercises come with

detailed explanations and complete code samples, ensuring a comprehensive

learning experience.

#JavaScript #AsynchronousProgramming #WebDevelopment #CodingExercises

#AsyncAwait #Promises #TechLearning

Let's make our web applications more responsive and faster by mastering

asynchronous JavaScript. Share your thoughts or questions below, and let's

engage in a productive discussion. Happy coding!🎉

Exercise 1: Basic Callback Function
Objective: Understand how to use a callback function to handle asynchronous

operations.

function fetchData(callback) {

setTimeout(() => { // Simulates fetching data from an API

callback('Data fetched');

}, 1000);

}

fetchData((data) => {

console.log(data); // Expected output: Data fetched

});

Explanation: Demonstrates the basic usage of a callback function to handle data

that is fetched asynchronously.

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

2

https://basescripts.com/


Exercise 2: Promise Basics
Objective: Learn to create and use a Promise to handle asynchronous operations.

function fetchData() {

return new Promise((resolve, reject) => {

setTimeout(() => resolve('Data fetched'), 1000);

});

}

fetchData().then(data => console.log(data)); // Expected output: Data fetched

Explanation: Introduces the concept of Promises as a way to handle asynchronous

tasks, using resolve to handle successful operations.

Exercise 3: Handling Promise Rejection
Objective: Learn to handle errors in Promises using catch.

function fetchData() {

return new Promise((resolve, reject) => {

setTimeout(() => reject('Error fetching data'), 1000);

});

}

fetchData().then(data => console.log(data)).catch(error => console.error(error)); //

Expected output: Error fetching data

Explanation: Teaches error handling in Promises with catch, providing a

mechanism to handle rejected promises.

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

3

https://basescripts.com/


Exercise 4: Chaining Promises
Objective: Understand how to chain Promises for sequential asynchronous

operations.

function firstTask() {

return new Promise(resolve => setTimeout(() => resolve('First task completed'),

1000));

}

function secondTask() {

return new Promise(resolve => setTimeout(() => resolve('Second task

completed'), 1000));

}

firstTask().then(result => {

console.log(result);

return secondTask();

}).then(result => console.log(result));

Explanation: Demonstrates chaining multiple promises to ensure that

asynchronous operations are completed in sequence.

Exercise 5: Async/Await Basic
Objective: Use async and await to handle asynchronous operations more

intuitively.

async function fetchData() {

return 'Data fetched';

}

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

4

https://basescripts.com/


async function run() {

const data = await fetchData();

console.log(data); // Expected output: Data fetched

}

run();

Explanation: Introduces async/await syntax as a cleaner and more readable way to

handle asynchronous operations compared to Promises and callbacks.

Exercise 6: Error Handling with Async/Await
Objective: Learn to handle errors in asynchronous functions using try/catch.

async function fetchData() {

throw 'Error fetching data';

}

async function run() {

try {

const data = await fetchData();

console.log(data);

} catch (error) {

console.error(error); // Expected output: Error fetching data

}

}

run();

Explanation: Teaches error handling in async/await syntax using try/catch blocks to

catch and handle errors in asynchronous operations.

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

5

https://basescripts.com/


Exercise 7: Using Promise.all
Objective: Execute multiple asynchronous operations in parallel and handle their

results together.

function fetchData1() {

return new Promise(resolve => setTimeout(() => resolve('Data 1 fetched'), 1000));

}

function fetchData2() {

return new Promise(resolve => setTimeout(() => resolve('Data 2 fetched'), 2000));

}

async function run() {

const [data1, data2] = await Promise.all([fetchData1(), fetchData2()]);

console.log(data1, data2); // Expected output: Data 1 fetched Data 2 fetched

}

run();

Explanation: Shows how to use Promise.all to efficiently handle multiple promises

by running them in parallel and waiting for all of them to complete.

Exercise 8: Async/Await with Fetch API
Objective: Fetch data from an API using async/await and the Fetch API.

async function fetchData() {

const response = await fetch('https://api.example.com/data');

const data = await response.json();

console.log(data);

}

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

6

https://basescripts.com/


fetchData();

Explanation: Combines async/await with the Fetch API to perform asynchronous

HTTP requests in a clean and readable way.

Exercise 9: Custom Async Iterator
Objective: Create a custom asynchronous iterator to iterate over data

asynchronously.

async function* asyncGenerator() {

let i = 0;

while(i < 3) {

yield await new Promise(resolve => setTimeout(() => resolve(i++), 1000));

}

}

async function run() {

for await (let num of asyncGenerator()) {

console.log(num); // Expected output: 0 1 2

}

}

run();

Explanation: Introduces asynchronous generators and for await...of loops to

handle asynchronous iteration, useful for processing streams of data.

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

7

https://basescripts.com/


Exercise 10: Handling Multiple Fetch Requests
Objective: Fetch multiple URLs in parallel and process the data once all requests

are completed.

async function fetchData(urls) {

const promises = urls.map(url => fetch(url).then(response => response.json()));

return Promise.all(promises);

}

const urls = ['https://api.example.com/data1', 'https://api.example.com/data2'];

fetchData(urls).then(data => console.log(data));

Explanation: Demonstrates handling multiple asynchronous fetch requests in

parallel using Promise.all, a common pattern in web development for working

with multiple API endpoints.

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

8

https://basescripts.com/

