CODE EXERCISE

+’ Deep Dive into JavaScript's
Event Loop and Concurrency
Model! &’

CODING EXERCISES TEST YOUR SKILL

Deep Dive into JavaScript's Event Loop and Concurrency Model! ',«;7
Exercise 1: Understanding the Event Loop
Exercise 2: Exploring Microtasks

Exercise 3: Macrotasks and Microtasks
Exercise 4: Blocking the Event Loop

Exercise 5: Async/Await and the Event Loop
Exercise 6: Event Loop with Setimmediate
Exercise 7: Process.nextTick in Node.js
Exercise 8: Combining Async Operations
Exercise 9: Async Function in a Loop
Exercise 10: Event Loop with 1/O Operations

Deep Dive into JavaScript's Event Loop and Concurrency
Model! %’

From exploring the nuances of microtasks and macrotasks to dissecting
async/await and event loop intricacies, these exercises are tailor-made for
developers eager to master JavaScript's concurrency model and event-driven

architecture.

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/
1

00 NOO O U AP W WNR


https://basescripts.com/

Embark on this journey to demystify asynchronous JavaScript:
#JavaScript #EventLoop #Concurrency #AsyncProgramming #WebDevelopment

#CodingExercises #TechCommunity

Dive into these exercises, share your experiences, and let's unravel the wonders of

the JavaScript event loop together! !@

The JavaScript Event Loop and Concurrency Model are fundamental concepts for
understanding how JavaScript handles asynchronous operations, despite being a
single-threaded language. These concepts are crucial for developing efficient,
non-blocking web applications. Below are 10 coding exercises designed to
illustrate various aspects of the event loop, concurrency, and how JavaScript

manages asynchronous and synchronous code execution.

Exercise 1: Understanding the Event Loop
Objective: Observe how JavaScript's event loop handles asynchronous and
synchronous operations.
console.log('Start');
setTimeout(() => {
console.log('Timeout 1');
1, 0);
Promise.resolve().then(() => console.log('Promise'));

console.log('End');

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/
2



https://basescripts.com/

Explanation: This exercise demonstrates the order of execution in the JavaScript
event loop. Despite the setTimeout delay being 0, the promise is executed first

due to the microtask queue's priority over the callback queue.

Exercise 2: Exploring Microtasks
Objective: Understand the execution order of microtasks.
console.log('Start');
Promise.resolve().then(() => console.log('Promise 1'));
Promise.resolve().then(() => {

console.log('Promise 2');

Promise.resolve().then(() => console.log('Promise 3'));
};
console.log('End');
Explanation: Demonstrates how promises (microtasks) are handled in the
JavaScript event loop. Microtasks execute after the currently executing script and

before any other macrotasks, such as I/O or timers.

Exercise 3: Macrotasks and Microtasks

Objective: Differentiate between macrotasks and microtasks in the event loop.
setTimeout(() => console.log('Timeout'), 0);

Promise.resolve().then(() => console.log('Promise'));

// Expected output:

// Promise

// Timeout

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/
3



https://basescripts.com/

Explanation: This illustrates how the event loop prioritizes microtasks (promises)
over macrotasks (setTimeout). The microtasks queue is processed completely

before any macrotasks are considered.

Exercise 4: Blocking the Event Loop

Objective: Observe how blocking the event loop affects asynchronous execution.
console.log('Start');

setTimeout(() => console.log('Timeout'), 1000);

const startTime = new Date().getTime();

while (new Date().getTime() - startTime < 2000);

console.log('While loop ended');

Explanation: This code blocks the event loop with a synchronous while loop,
delaying the execution of the setTimeout callback. It highlights the impact of

blocking operations on asynchronous callbacks.

Exercise 5: Async/Await and the Event Loop
Objective: Explore how async/await influences the execution order in the event
loop.
async function asyncFunction() {
console.log('Async function start');
await Promise.resolve();
console.log('After await');

}

console.log('Global start');

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/
4



https://basescripts.com/

asyncFunction();

console.log('Global end');

// Expected output:

// Global start

// Async function start

// Global end

// After await

Explanation: Demonstrates how async/await works within the event loop, with the
await keyword causing the rest of the async function to be executed as a

microtask.

Exercise 6: Event Loop with Setimmediate

Objective: Compare setimmediate and setTimeout in the context of the event
loop.

console.log('Start');

setimmediate(() => console.log('Setimmediate'));

setTimeout(() => console.log('Timeout'), 0);

console.log('End");

// Note: ‘setimmediate” is available in Node.js environment, not in all JavaScript
environments.

Explanation: This exercise is designed to illustrate the differences between
setimmediate and setTimeout in Node.js, showing how tasks are scheduled in the
event loop. The actual output can vary depending on the environment and current

phase of the event loop.

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/
5



https://basescripts.com/

Exercise 7: Process.nextTick in Node.js

Objective: Understand the role of process.nextTick in the event loop.
console.log('Start');

process.nextTick(() => console.log('NextTick'));

Promise.resolve().then(() => console.log('Promise'));

console.log('End');

// Note: “process.nextTick is specific to Node.js.

Explanation: Shows how process.nextTick allows developers to schedule callbacks
to be invoked at the beginning of the next iteration of the event loop, before any

other /O events, including before promises.

Exercise 8: Combining Async Operations
Objective: Visualize the execution order with a mix of asynchronous operations.
setTimeout(() => console.log('Timeout 1'), 0);
Promise.resolve().then(() => console.log('Promise 1'));
setTimeout(() => {
Promise.resolve().then(() => console.log('Promise 2'));
console.log('Timeout 2');
1, 0);
// Expected output:
// Promise 1
// Timeout 1
// Timeout 2
// Promise 2

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/
6



https://basescripts.com/

Explanation: This exercise demonstrates how JavaScript handles a combination of
asynchronous operations, illustrating the interleaving of microtasks and

macrotasks.

Exercise 9: Async Function in a Loop
Objective: Investigate how asynchronous functions behave inside a synchronous
loop.
for (leti=0;i<3;i++){
setTimeout(() => console.log(i), 0);
}
for(leti=0;i<3;i++){
(async () => console.log(i))();
}
// Expected output:
/10
/10
/10
//1
//1
//1
/]2
/]2
/]2

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/
7



https://basescripts.com/

Explanation: Demonstrates the behavior of asynchronous functions (setTimeout
and async functions) inside a synchronous for loop, highlighting the closure and

scope handling in JavaScript.

Exercise 10: Event Loop with I/O Operations
Obijective: Explore how I/O operations are handled in the event loop.
const fs = require('fs');
console.log('Start');
fs.readFile(__filename, () => {
setTimeout(() => console.log('Timeout'), 0);
setimmediate(() => console.log('Setimmediate'));
};
console.log('End');
// Note: This exercise is specific to Node.js and demonstrates the interaction
between 1/0 callbacks and timers in the event loop.
Explanation: This code aims to show the order of execution for I/O callbacks,
setTimeout, and setimmediate in Node.js, illustrating the complexities of the

event loop in handling different types of operations.

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/
8



https://basescripts.com/

