
CODE EXERCISE
Mastering JavaScript

Scope
CODING EXERCISES TEST YOUR SKILLS

Mastering JavaScript Scope
🌟Mastering JavaScript Scope: A Must-Have Skill for Every Developer🌟

Unlock the mysteries of JavaScript scope with our latest series of 10 must-try

coding exercises. From global and function scopes to block scopes and closures,

these exercises are designed to solidify your understanding of how JavaScript

manages variable accessibility and lifetime.

Whether you're a beginner eager to learn the basics or an experienced developer

looking to brush up on your knowledge, these exercises provide practical,

hands-on experience with detailed explanations and complete code samples.

#JavaScript #WebDevelopment #CodingExercises #Scope #LearningToCode

#ProgrammingBasics #DeveloperTools

Engage with the content, share your experiences, and let's discuss the fascinating

world of JavaScript scope!🚀

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

1

https://basescripts.com/


Exercise 1: Understanding Global Scope
Objective: Learn how variables declared in the global scope can be accessed

anywhere in your code.

var globalVar = "I am a global variable";

function accessGlobalVar() {

console.log(globalVar); // Task: Log the global variable

}

accessGlobalVar(); // Expected output: I am a global variable

Explanation: This exercise demonstrates how a variable declared outside any

function becomes a global variable and is accessible throughout your program.

Exercise 2: Exploring Function Scope
Objective: Understand how variables declared within a function are only

accessible within that function.

function myFunction() {

var localVar = "I am a local variable";

console.log(localVar); // Inside function

}

myFunction(); // Expected output: I am a local variable

console.log(localVar); // Task: Attempt to log localVar outside the function

Explanation: Illustrates function scope by showing that variables declared within a

function cannot be accessed from outside the function. The second console.log

will result in a ReferenceError.

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

2

https://basescripts.com/


Exercise 3: Block Scope with let and const
Objective: Learn about block scope introduced with let and const in ES6.

if (true) {

let blockScopedVar = "I am block scoped";

console.log(blockScopedVar); // Inside block

}

console.log(blockScopedVar); // Task: Attempt to log blockScopedVar outside the

block

Explanation: Shows that variables declared with let or const are block-scoped,

meaning they are only accessible within the block they are declared in. The

second console.log will result in a ReferenceError.

Exercise 4: Var vs. Let in Loops
Objective: Observe the differences between var and let in a for loop.

for (var i = 0; i < 3; i++) {

console.log(i); // Inside loop

}

console.log(i); // Task: Log i outside the loop using var

for (let j = 0; j < 3; j++) {

console.log(j); // Inside loop

}

console.log(j); // Task: Attempt to log j outside the loop using let

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

3

https://basescripts.com/


Explanation: Demonstrates the difference in scoping rules between var

(function-scoped or globally-scoped) and let (block-scoped), affecting their

accessibility outside the loop.

Exercise 5: Closure and Function Scope
Objective: Understand how closures allow access to an outer function’s scope

from an inner function.

function outerFunction() {

var outerVar = "I am from outer";

function innerFunction() {

console.log(outerVar); // Task: Log outerVar from inside the innerFunction

}

return innerFunction;

}

var myInnerFunction = outerFunction();

myInnerFunction(); // Expected output: I am from outer

Explanation: This exercise illustrates a closure, where an inner function has access

to the variables of an outer function even after the outer function has finished

execution.

Exercise 6: Immediate Invoked Function Expression (IIFE)
and Scope
Objective: Use an IIFE to create a private scope.

(function() {

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

4

https://basescripts.com/


var privateVar = "I am private";

console.log(privateVar); // Inside IIFE

})();

console.log(privateVar); // Task: Attempt to log privateVar outside the IIFE

Explanation: Teaches the concept of using IIFEs to create a private scope, where

privateVar is not accessible outside the IIFE, demonstrating the function scope in

action.

Exercise 7: Global Variable Shadowing
Objective: Learn how local variables can shadow global variables with the same

name.

var shadowVar = "global";

function shadowTest() {

var shadowVar = "local";

console.log(shadowVar); // Task: Log shadowVar within the function

}

shadowTest(); // Expected output: local

console.log(shadowVar); // Expected output: global

Explanation: Demonstrates variable shadowing, where a local variable in a

function has the same name as a global variable, temporarily overshadowing the

global variable within that function.

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

5

https://basescripts.com/


Exercise 8: Block Scope Shadowing
Objective: Understand how block-scoped variables can shadow outer scope

variables.

var outerVar = "I am outside";

if (true) {

let outerVar = "I am inside";

console.log(outerVar); // Inside block

}

console.log(outerVar); // Task: Log outerVar outside the block

Explanation: Shows how a block-scoped variable (let or const) can shadow a

variable from the outer scope within its block.

Exercise 9: Lexical Scope
Objective: Explore how lexical scope works in nested functions.

function outerFunc() {

let lexVar = "I am lexical";

function innerFunc() {

console.log(lexVar); // Task: Log lexVar from the inner function

}

innerFunc();

}

outerFunc(); // Expected output: I am lexical

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

6

https://basescripts.com/


Explanation: Highlights lexical scoping by showing how a function's scope is

determined by its physical location in the source code, allowing nested functions

to access variables from their parent functions.

Exercise 10: Using let in For Loop Closure
Objective: Solve the classic loop closure problem using let.

for (let i = 0; i < 3; i++) {

setTimeout(() => console.log(i), 1000); // Task: Log i after 1 second

}

Explanation: This exercise addresses the common loop closure issue by using let to

ensure each iteration of the loop has its block scope, thus capturing the current

value of i correctly.

Learn more about JavaScript with Examples and Source Code Laurence Svekis
Courses https://basescripts.com/

7

https://basescripts.com/

