
Comprehensive Guide to JavaScript
Objects

Welcome to the comprehensive guide on JavaScript Objects! This guide is designed
to help you understand, create, and manipulate objects in JavaScript. Whether you're a
beginner or looking to deepen your knowledge, you'll find detailed explanations, code

Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis Google Apps Script and
Workspace Resources

1

https://basescripts.com/

examples, exercises, and multiple-choice questions to enhance your learning
experience.

Comprehensive Guide to JavaScript Objects 1
1. Introduction to JavaScript Objects 3

What are Objects in JavaScript? 3
Why Use Objects? 4
Example of a Simple Object 4

2. Creating Objects 4
Object Literals 4
Constructor Functions 5
ES6 Classes 5
Object.create() 6

3. Accessing and Modifying Object Properties 7
Dot Notation 7
Bracket Notation 7

4. Object Methods 8
Defining Methods 8
Using this in Methods 9
Example: Object with Multiple Methods 9

5. The this Keyword 10
What is this? 10
How this Works in Different Contexts 10
Example: this in Different Contexts 12

6. Prototypes and Inheritance 13
What are Prototypes? 13
Prototype Chain 13
Inheritance with Constructor Functions 14
Inheritance with ES6 Classes 15
Example: Prototypal Inheritance 16

7. ES6 Object Features 17
Destructuring 17
Spread Operator 18
Object.entries, Object.keys, Object.values 19

8. JSON (JavaScript Object Notation) 20
Converting Objects to JSON 20
Parsing JSON into Objects 21
Example: Fetching Data from an API 21

9. Object vs. Primitive Types 21
Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis Google Apps Script and

Workspace Resources

2

https://basescripts.com/

Primitive Types 21
Objects 22
Key Differences 23

10. Common Object Manipulation Techniques 23
Adding Properties 24
Deleting Properties 24
Checking for Property Existence 25
Iterating Over Object Properties 25
Cloning Objects 25
Merging Objects 26

11. Projects and Exercises 26
Exercise 1: Creating and Manipulating Objects 27
Exercise 2: Object Methods and this 28
Exercise 3: Prototypal Inheritance 28
Exercise 4: Object Destructuring and Spread Operator 29

12. Multiple Choice Questions 31
Question 1 31
Question 2 32
Question 3 32
Question 4 33
Question 5 33
Question 6 34
Question 7 34
Question 8 35
Question 9 35
Question 10 36

13. Conclusion 36
Next Steps 36

1. Introduction to JavaScript Objects

What are Objects in JavaScript?

In JavaScript, an object is a collection of key-value pairs. Each key (also called a
property) is a string, and the value can be of any data type, including other objects or
functions. Objects are fundamental to JavaScript and are used extensively in various
programming scenarios, such as representing real-world entities, managing data, and
structuring applications.

Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis Google Apps Script and
Workspace Resources

3

https://basescripts.com/

Why Use Objects?

● Organize Data: Group related data together.
● Reusability: Create reusable components or modules.
● Dynamic Behavior: Add methods to objects to define behaviors.
● Encapsulation: Encapsulate related functionalities within objects.

Example of a Simple Object
const person = {

name: "Alice",
age: 30,
isEmployed: true

};
console.log(person.name); // Output: Alice
console.log(person["age"]); // Output: 30

Explanation:

● person is an object with three properties: name, age, and isEmployed.
● Properties can be accessed using dot notation (person.name) or bracket

notation (person["age"]).

2. Creating Objects

JavaScript provides multiple ways to create objects. Understanding these methods
allows you to choose the most appropriate one based on your use case.

Object Literals

The most straightforward way to create an object is using an object literal, which
involves defining the object directly with its properties and values.

Example:

const car = {
brand: "Toyota",
model: "Camry",
year: 2020,

Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis Google Apps Script and
Workspace Resources

4

https://basescripts.com/

isElectric: false
};
console.log(car.brand); // Output: Toyota

Explanation:

● The car object is created with properties: brand, model, year, and
isElectric.

● Object literals are simple and concise, ideal for creating single objects.

Constructor Functions

Before ES6 introduced classes, constructor functions were commonly used to create
multiple objects with similar properties.

Example:

function Person(name, age, isEmployed) {
this.name = name;
this.age = age;
this.isEmployed = isEmployed;

}
const person1 = new Person("Bob", 25, true);
const person2 = new Person("Carol", 28, false);
console.log(person1.name); // Output: Bob
console.log(person2.age); // Output: 28

Explanation:

● Person is a constructor function that initializes new objects with name, age, and
isEmployed properties.

● The new keyword creates a new instance of Person.

ES6 Classes

ES6 introduced the class syntax, providing a clearer and more familiar way to create
objects and handle inheritance.

Example:

Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis Google Apps Script and
Workspace Resources

5

https://basescripts.com/

class Animal {
constructor(name, species) {

this.name = name;
this.species = species;

}
speak() {

console.log(`${this.name} makes a noise.`);
}

}
const animal1 = new Animal("Lion", "Panthera leo");
animal1.speak(); // Output: Lion makes a noise.

Explanation:

● Animal is a class with a constructor that initializes name and species.
● The speak method defines behavior for instances of the class.
● Instances are created using the new keyword.

Object.create()

The Object.create() method allows you to create a new object with a specified
prototype object and properties.

Example:

const proto = {
greet() {

console.log(`Hello, my name is ${this.name}.`);
}

};
const user = Object.create(proto);
user.name = "David";
user.age = 22;
user.greet(); // Output: Hello, my name is David.

Explanation:

● proto is an object that serves as the prototype for the new object.
Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis Google Apps Script and

Workspace Resources

6

https://basescripts.com/

● user is created with proto as its prototype.
● Properties name and age are added to user.
● The greet method is inherited from proto.

3. Accessing and Modifying Object Properties

Once you've created an object, you often need to access or modify its properties.
JavaScript provides two primary methods for this: dot notation and bracket notation.

Dot Notation

Dot notation is the most common and readable way to access object properties.

Example:

const book = {
title: "JavaScript Essentials",
author: "Eve Smith",
pages: 350

};
console.log(book.title); // Output: JavaScript Essentials
// Modifying a property
book.pages = 400;
console.log(book.pages); // Output: 400

Explanation:

● Access properties using object.propertyName.
● Modify properties by assigning a new value using the same notation.

Bracket Notation

Bracket notation is useful when property names are dynamic or not valid identifiers
(e.g., contain spaces or special characters).

Example:

const user = {
"first name": "Frank",

Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis Google Apps Script and
Workspace Resources

7

https://basescripts.com/

"last name": "Brown",
age: 45

};
console.log(user["first name"]); // Output: Frank
// Adding a new property
user["isAdmin"] = true;
console.log(user.isAdmin); // Output: true

Explanation:

● Access properties using object["propertyName"].
● Useful for properties with names that include spaces or are stored in variables.

Example with Variables:

const key = "age";
console.log(user[key]); // Output: 45
// Dynamic property access
const prop = "isAdmin";
console.log(user[prop]); // Output: true

4. Object Methods

Methods are functions stored as object properties. They define behaviors or actions
that an object can perform.

Defining Methods

Example:

const calculator = {
add: function(a, b) {

return a + b;
},
subtract(a, b) { // ES6 shorthand

return a - b;
}

};
Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis Google Apps Script and

Workspace Resources

8

https://basescripts.com/

console.log(calculator.add(5, 3)); // Output: 8
console.log(calculator.subtract(10, 4)); // Output: 6

Explanation:

● add and subtract are methods of the calculator object.
● Methods can be defined using the traditional function syntax or the ES6

shorthand.

Using this in Methods

The this keyword refers to the object that the method belongs to, allowing access to
other properties or methods within the same object.

Example:

const person = {
name: "Grace",
greet() {

console.log(`Hello, my name is ${this.name}.`);
}

};
person.greet(); // Output: Hello, my name is Grace.

Explanation:

● Inside the greet method, this.name refers to the name property of the
person object.

Example: Object with Multiple Methods
const bankAccount = {

owner: "Henry",
balance: 1000,
deposit(amount) {

this.balance += amount;
console.log(`Deposited $${amount}. New balance:

$${this.balance}.`);
},

Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis Google Apps Script and
Workspace Resources

9

https://basescripts.com/

withdraw(amount) {
if (amount > this.balance) {

console.log("Insufficient funds.");
} else {

this.balance -= amount;
console.log(`Withdrew $${amount}. New balance:

$${this.balance}.`);
}

},
getBalance() {

console.log(`Current balance: $${this.balance}.`);
}

};
bankAccount.deposit(500); // Output: Deposited $500. New
balance: $1500.
bankAccount.withdraw(200); // Output: Withdrew $200. New
balance: $1300.
bankAccount.getBalance(); // Output: Current balance: $1300.

Explanation:

● deposit, withdraw, and getBalance are methods that manipulate and
display the balance.

● this.balance ensures that the correct balance is accessed and modified.

5. The this Keyword

Understanding the this keyword is crucial for working with objects and their methods
in JavaScript.

What is this?

In JavaScript, this refers to the context in which a function is executed. Its value
depends on how a function is called.

How thisWorks in Different Contexts

Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis Google Apps Script and
Workspace Resources

10

https://basescripts.com/

1. Global Context:
○ In the global execution context (outside of any function), this refers to

the global object (window in browsers).

console.log(this); // In browsers, logs the Window object

2. Object Method:
○ When a function is called as a method of an object, this refers to that

object.

const user = {
name: "Ivy",
greet() {

console.log(`Hi, I'm ${this.name}.`);
}

};
user.greet(); // Output: Hi, I'm Ivy.

3. Constructor Function or Class:
○ Inside a constructor function or class, this refers to the newly created

instance.

function Car(make, model) {
this.make = make;
this.model = model;

}
const car1 = new Car("Tesla", "Model S");
console.log(car1.make); // Output: Tesla

4. Standalone Function:
○ In a regular function, this refers to the global object (in non-strict mode)

or undefined (in strict mode).

function showThis() {
console.log(this);

}
showThis(); // In non-strict mode, logs the Window object; in
strict mode, undefined.

Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis Google Apps Script and
Workspace Resources

11

https://basescripts.com/

5. Arrow Functions:
○ Arrow functions do not have their own this. They inherit this from the

surrounding (lexical) context.

const person = {
name: "Jack",
greet: function() {

const sayHello = () => {
console.log(`Hello, I'm ${this.name}.`);

};
sayHello();

}
};
person.greet(); // Output: Hello, I'm Jack.

6. Explanation:
○ The arrow function sayHello inherits this from the greet method,

which refers to the person object.

Example: this in Different Contexts

const company = {
name: "TechCorp",
employees: 100,
info: function() {

console.log(`Company: ${this.name}, Employees:
${this.employees}`);

// Nested regular function
function nestedFunction() {

console.log(`Nested Function - Company:
${this.name}`);

}
nestedFunction(); // 'this' refers to the global object

or undefined
// Nested arrow function
const nestedArrow = () => {

Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis Google Apps Script and
Workspace Resources

12

https://basescripts.com/

console.log(`Nested Arrow Function - Company:
${this.name}`);

};
nestedArrow(); // 'this' refers to 'company' object

}
};
company.info();
/*
Output:
Company: TechCorp, Employees: 100
Nested Function - Company: undefined
Nested Arrow Function - Company: TechCorp
*/

Explanation:

● In info, this refers to the company object.
● In nestedFunction, this is not bound to company, resulting in undefined

(in strict mode).
● In nestedArrow, this is inherited from the info method, thus referring to

company.

6. Prototypes and Inheritance

JavaScript uses prototypes to enable inheritance and share properties and methods
among objects. Understanding prototypes is essential for effective object-oriented
programming in JavaScript.

What are Prototypes?

Every JavaScript object has a hidden property called [[Prototype]] (commonly
accessed via __proto__ or Object.getPrototypeOf()). This prototype object can
have its own prototype, forming a prototype chain.

Prototype Chain

Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis Google Apps Script and
Workspace Resources

13

https://basescripts.com/

When accessing a property or method on an object, JavaScript first looks at the object
itself. If not found, it traverses up the prototype chain until it finds the property or
reaches the end (null).

Example:

const animal = {
eat() {

console.log("Eating...");
}

};
const dog = Object.create(animal);
dog.bark = function() {

console.log("Barking!");
};
dog.eat(); // Output: Eating...
dog.bark(); // Output: Barking!
console.log(Object.getPrototypeOf(dog) === animal); // Output:
true

Explanation:

● animal is an object with an eat method.
● dog is created with animal as its prototype.
● dog can access both its own bark method and the inherited eat method.

Inheritance with Constructor Functions

Constructor functions can set up inheritance by modifying the prototype.

Example:

function Vehicle(type) {
this.type = type;

}
Vehicle.prototype.describe = function() {

console.log(`This is a ${this.type}.`);
};

Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis Google Apps Script and
Workspace Resources

14

https://basescripts.com/

function Car(make, model) {
Vehicle.call(this, "Car"); // Inherit properties
this.make = make;
this.model = model;

}
// Inherit methods
Car.prototype = Object.create(Vehicle.prototype);
Car.prototype.constructor = Car;
Car.prototype.displayInfo = function() {

console.log(`Make: ${this.make}, Model: ${this.model}`);
};
const car1 = new Car("Toyota", "Corolla");
car1.describe(); // Output: This is a Car.
car1.displayInfo(); // Output: Make: Toyota, Model: Corolla.

Explanation:

● Vehicle is a constructor function with a describe method.
● Car inherits from Vehicle using Vehicle.call(this, "Car") and setting

its prototype to Vehicle.prototype.
● Car has its own method displayInfo.

Inheritance with ES6 Classes

ES6 classes provide a more straightforward syntax for inheritance.

Example:

class Animal {
constructor(name) {

this.name = name;
}
speak() {

console.log(`${this.name} makes a noise.`);
}

}
class Dog extends Animal {

Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis Google Apps Script and
Workspace Resources

15

https://basescripts.com/

constructor(name, breed) {
super(name); // Call parent constructor
this.breed = breed;

}
speak() {

super.speak(); // Call parent method
console.log(`${this.name} barks.`);

}
}
const dog1 = new Dog("Max", "Labrador");
dog1.speak();
/*
Output:
Max makes a noise.
Max barks.
*/

Explanation:

● Animal is a base class with a speak method.
● Dog extends Animal, adding a breed property and overriding the speak

method.
● super is used to call the parent class's constructor and methods.

Example: Prototypal Inheritance
const personProto = {

greet() {
console.log(`Hello, my name is ${this.name}.`);

}
};
function Person(name, age) {

this.name = name;
this.age = age;

}
Person.prototype = Object.create(personProto);
Person.prototype.constructor = Person;

Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis Google Apps Script and
Workspace Resources

16

https://basescripts.com/

Person.prototype.sayAge = function() {
console.log(`I am ${this.age} years old.`);

};
const person1 = new Person("Linda", 35);
person1.greet(); // Output: Hello, my name is Linda.
person1.sayAge(); // Output: I am 35 years old.

Explanation:

● personProto contains a greet method.
● Person constructor initializes name and age.
● Person.prototype is set to inherit from personProto.
● sayAge is a method specific to Person.

7. ES6 Object Features

ES6 introduced several enhancements to working with objects in JavaScript, making it
more powerful and expressive.

Destructuring

Destructuring allows you to extract properties from objects into variables.

Example:

const user = {
username: "mike123",
email: "mike@example.com",
location: "New York"

};
// Destructuring assignment
const { username, email } = user;
console.log(username); // Output: mike123
console.log(email); // Output: mike@example.com

Explanation:

● Extracts username and email from the user object into separate variables.

Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis Google Apps Script and
Workspace Resources

17

https://basescripts.com/

Nested Destructuring:

const student = {
name: "Nina",
scores: {

math: 90,
science: 85

}
};
const { name, scores: { math, science } } = student;
console.log(name); // Output: Nina
console.log(math); // Output: 90
console.log(science); // Output: 85

Spread Operator

The spread operator (...) allows you to spread properties from one object into
another.

Example:

const obj1 = { a: 1, b: 2 };
const obj2 = { c: 3, d: 4 };
const combined = { ...obj1, ...obj2 };
console.log(combined); // Output: { a: 1, b: 2, c: 3, d: 4 }

Merging Objects:

const defaultSettings = {
theme: "light",
notifications: true,
location: "US"

};
const userSettings = {

theme: "dark",
location: "Canada"

};

Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis Google Apps Script and
Workspace Resources

18

https://basescripts.com/

const settings = { ...defaultSettings, ...userSettings };
console.log(settings);
/*
Output:
{

theme: "dark",
notifications: true,
location: "Canada"

}
*/

Explanation:

● Properties in userSettings override those in defaultSettings.

Object.entries, Object.keys, Object.values

These methods provide ways to iterate over object properties.

Object.keys(obj): Returns an array of the object's own enumerable property
names.

const car = { make: "Honda", model: "Civic", year: 2021 };
console.log(Object.keys(car)); // Output: ["make", "model",
"year"]
Object.values(obj): Returns an array of the object's own enumerable property
values.

console.log(Object.values(car)); // Output: ["Honda", "Civic",
2021]
Object.entries(obj): Returns an array of the object's own enumerable [key,
value] pairs.

console.log(Object.entries(car));
/*
Output:
[

Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis Google Apps Script and
Workspace Resources

19

https://basescripts.com/

["make", "Honda"],
["model", "Civic"],
["year", 2021]

]
*/

Example: Iterating Over Object Properties

const book = {
title: "Learning JavaScript",
author: "Sam Wilson",
pages: 400

};
// Using Object.keys
Object.keys(book).forEach(key => {

console.log(`${key}: ${book[key]}`);
});
/*
Output:
title: Learning JavaScript
author: Sam Wilson
pages: 400
*/

8. JSON (JavaScript Object Notation)

JSON is a lightweight data interchange format that's easy for humans to read and write
and easy for machines to parse and generate. It's based on a subset of JavaScript and
is commonly used for transmitting data in web applications.

Converting Objects to JSON

Use JSON.stringify() to convert a JavaScript object into a JSON string.

Example:

const user = {

Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis Google Apps Script and
Workspace Resources

20

https://basescripts.com/

name: "Olivia",
age: 29,
isAdmin: false

};
const jsonString = JSON.stringify(user);
console.log(jsonString); // Output:
{"name":"Olivia","age":29,"isAdmin":false}

Parsing JSON into Objects

Use JSON.parse() to convert a JSON string back into a JavaScript object.

Example:

const jsonString = '{"name":"Olivia","age":29,"isAdmin":false}';
const user = JSON.parse(jsonString);
console.log(user.name); // Output: Olivia
console.log(user.age); // Output: 29

Example: Fetching Data from an API
fetch('https://api.example.com/user/1')

.then(response => response.json())

.then(data => {
console.log(data.name); // Output: User's name

})
.catch(error => console.error('Error:', error));

Explanation:

● The fetch API retrieves data from a URL.
● response.json() parses the JSON response into a JavaScript object.

9. Object vs. Primitive Types

Understanding the difference between objects and primitive types is essential for
effective programming in JavaScript.

Primitive Types
Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis Google Apps Script and

Workspace Resources

21

https://basescripts.com/

Primitive types are the most basic data types in JavaScript. They are immutable,
meaning their values cannot be changed once created.

● String
● Number
● Boolean
● Undefined
● Null
● Symbol (ES6)
● BigInt (ES2020)

Example:

let str = "Hello";
let num = 42;
let isValid = true;
str.toUpperCase(); // Returns "HELLO", but does not change str
console.log(str); // Output: Hello

Explanation:

● Methods like toUpperCase() return new values without modifying the original
primitive.

Objects

Objects are mutable and can have their properties and methods changed after creation.

Example:

const car = {
make: "Ford",
model: "Mustang",
year: 1969

};
car.year = 2021; // Modifies the 'year' property
console.log(car.year); // Output: 2021

Explanation:

Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis Google Apps Script and
Workspace Resources

22

https://basescripts.com/

● Objects can be modified by adding, removing, or changing properties.

Key Differences

Feature Primitive Types Objects

Mutability Immutable Mutable

Storage Stored by value Stored by reference

Methods Limited built-in methods (e.g.,
toUpperCase for strings)

Can have multiple methods
and properties

Comparis
on

Compared by value Compared by reference

Examples String, Number, Boolean, Undefined,
Null, Symbol, BigInt

Object literals, Arrays,
Functions, Dates, etc.

Example: Comparison

let a = 10;
let b = 10;
console.log(a === b); // Output: true (compared by value)
const obj1 = { value: 10 };
const obj2 = { value: 10 };
console.log(obj1 === obj2); // Output: false (different
references)
const obj3 = obj1;
console.log(obj1 === obj3); // Output: true (same reference)

Explanation:

● Primitive values with the same content are considered equal.
● Different objects with identical properties are not equal because they reference

different memory locations.
● Assigning one object to another creates a reference to the same object.

10. Common Object Manipulation Techniques

Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis Google Apps Script and
Workspace Resources

23

https://basescripts.com/

Manipulating objects is a fundamental aspect of JavaScript programming. Below are
some common techniques and methods used to work with objects effectively.

Adding Properties

Example:

const laptop = {
brand: "Dell",
model: "XPS 13"

};
// Adding a new property
laptop.year = 2022;
laptop["processor"] = "Intel i7";
console.log(laptop);
/*
Output:
{

brand: "Dell",
model: "XPS 13",
year: 2022,
processor: "Intel i7"

}
*/

Deleting Properties

Example:

delete laptop.year;
console.log(laptop);
/*
Output:
{

brand: "Dell",
model: "XPS 13",
processor: "Intel i7"

Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis Google Apps Script and
Workspace Resources

24

https://basescripts.com/

}
*/

Checking for Property Existence

Use the in operator or hasOwnProperty() method.

Example:

console.log("brand" in laptop); // Output: true
console.log(laptop.hasOwnProperty("model")); // Output: true
console.log(laptop.hasOwnProperty("year")); // Output: false

Iterating Over Object Properties

Use for...in loop or Object.keys(), Object.values(), Object.entries().

Using for...in:

for (let key in laptop) {
console.log(`${key}: ${laptop[key]}`);

}
/*
Output:
brand: Dell
model: XPS 13
processor: Intel i7
*/

Using Object.keys():

Object.keys(laptop).forEach(key => {
console.log(`${key}: ${laptop[key]}`);

});

Cloning Objects

Creating a copy of an object can be done using the spread operator or
Object.assign().

Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis Google Apps Script and
Workspace Resources

25

https://basescripts.com/

Using Spread Operator:

const original = { a: 1, b: 2 };
const clone = { ...original };
clone.c = 3;
console.log(original); // Output: { a: 1, b: 2 }
console.log(clone); // Output: { a: 1, b: 2, c: 3 }

Using Object.assign():

const original = { a: 1, b: 2 };
const clone = Object.assign({}, original);
clone.c = 3;
console.log(original); // Output: { a: 1, b: 2 }
console.log(clone); // Output: { a: 1, b: 2, c: 3 }

Note: These methods create shallow copies. For deep cloning (nested objects),
consider using libraries like Lodash (_.cloneDeep()) or structured cloning
(structuredClone() in modern environments).

Merging Objects

Combine multiple objects into one using the spread operator or Object.assign().

Example:

const obj1 = { a: 1, b: 2 };
const obj2 = { b: 3, c: 4 };
const merged = { ...obj1, ...obj2 };
console.log(merged); // Output: { a: 1, b: 3, c: 4 }

Explanation:

● Properties in later objects (obj2) overwrite those in earlier objects (obj1).

11. Projects and Exercises

Practical projects and exercises help reinforce your understanding of JavaScript
objects. Below are some hands-on activities to practice.

Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis Google Apps Script and
Workspace Resources

26

https://basescripts.com/

Exercise 1: Creating and Manipulating Objects

Task: Create an object representing a book with the following properties:

● title (string)
● author (string)
● pages (number)
● isAvailable (boolean)

Perform the following actions:

1. Log the book's title and author.
2. Change the isAvailable status to false.
3. Add a new property publisher.
4. Delete the pages property.
5. Check if the publisher property exists.

Solution:

// Creating the book object
const book = {

title: "Eloquent JavaScript",
author: "Marijn Haverbeke",
pages: 472,
isAvailable: true

};
// 1. Log the book's title and author
console.log(`Title: ${book.title}, Author: ${book.author}`);
// Output: Title: Eloquent JavaScript, Author: Marijn Haverbeke
// 2. Change the `isAvailable` status to `false`
book.isAvailable = false;
console.log(book.isAvailable); // Output: false
// 3. Add a new property `publisher`
book.publisher = "No Starch Press";
console.log(book.publisher); // Output: No Starch Press
// 4. Delete the `pages` property
delete book.pages;

Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis Google Apps Script and
Workspace Resources

27

https://basescripts.com/

console.log(book.pages); // Output: undefined
// 5. Check if the `publisher` property exists
console.log("publisher" in book); // Output: true
console.log(book.hasOwnProperty("publisher")); // Output: true

Exercise 2: Object Methods and this

Task: Create an object rectangle with properties width and height. Add methods
to calculate the area and perimeter of the rectangle using this.

Solution:

const rectangle = {
width: 10,
height: 5,
calculateArea() {

return this.width * this.height;
},
calculatePerimeter() {

return 2 * (this.width + this.height);
}

};
console.log(`Area: ${rectangle.calculateArea()}`); // Output:
Area: 50
console.log(`Perimeter: ${rectangle.calculatePerimeter()}`); //
Output: Perimeter: 30
// Modifying properties
rectangle.width = 20;
console.log(`New Area: ${rectangle.calculateArea()}`); //
Output: New Area: 100

Exercise 3: Prototypal Inheritance

Task: Create a constructor function Person with properties name and age. Add a
method introduce to its prototype that logs a greeting message. Then, create a
constructor function Student that inherits from Person and adds a property major.
Add a method study to Student's prototype.

Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis Google Apps Script and
Workspace Resources

28

https://basescripts.com/

Solution:

// Constructor function for Person
function Person(name, age) {

this.name = name;
this.age = age;

}
// Adding method to Person's prototype
Person.prototype.introduce = function() {

console.log(`Hi, I'm ${this.name} and I'm ${this.age} years
old.`);
};
// Constructor function for Student
function Student(name, age, major) {

Person.call(this, name, age); // Inherit properties
this.major = major;

}
// Inherit methods from Person
Student.prototype = Object.create(Person.prototype);
Student.prototype.constructor = Student;
// Adding method to Student's prototype
Student.prototype.study = function() {

console.log(`${this.name} is studying ${this.major}.`);
};
// Creating instances
const person1 = new Person("Emily", 40);
person1.introduce(); // Output: Hi, I'm Emily and I'm 40 years
old.
const student1 = new Student("Frank", 20, "Computer Science");
student1.introduce(); // Output: Hi, I'm Frank and I'm 20 years
old.
student1.study(); // Output: Frank is studying Computer
Science.

Exercise 4: Object Destructuring and Spread Operator

Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis Google Apps Script and
Workspace Resources

29

https://basescripts.com/

Task: Given the following object representing a laptop, perform the following actions:

1. Use destructuring to extract the brand and model properties into variables.
2. Create a new object laptopWithYear that includes all properties of laptop

and adds a year property.
3. Merge two objects specs1 and specs2 into a new object fullSpecs.

const laptop = {
brand: "Apple",
model: "MacBook Pro",
processor: "M1",
ram: "16GB"

};
const specs1 = {

storage: "512GB SSD",
display: "13-inch Retina"

};
const specs2 = {

graphics: "Integrated",
batteryLife: "20 hours"

};

Solution:

// 1. Destructuring
const { brand, model } = laptop;
console.log(brand); // Output: Apple
console.log(model); // Output: MacBook Pro
// 2. Creating a new object with the year
const laptopWithYear = { ...laptop, year: 2021 };
console.log(laptopWithYear);
/*
Output:
{

brand: "Apple",
model: "MacBook Pro",

Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis Google Apps Script and
Workspace Resources

30

https://basescripts.com/

processor: "M1",
ram: "16GB",
year: 2021

}
*/
// 3. Merging specs1 and specs2
const fullSpecs = { ...specs1, ...specs2 };
console.log(fullSpecs);
/*
Output:
{

storage: "512GB SSD",
display: "13-inch Retina",
graphics: "Integrated",
batteryLife: "20 hours"

}
*/

Explanation:

● Destructuring: Extracts brand and model from laptop.
● Spread Operator: Creates a new object laptopWithYear by spreading

laptop's properties and adding year.
● Merging Objects: Combines specs1 and specs2 into fullSpecs.

12. Multiple Choice Questions

Test your understanding of JavaScript objects with the following multiple-choice
questions.

Question 1

Which of the following is the correct way to create an object using an object
literal?

A) const obj = new Object();

Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis Google Apps Script and
Workspace Resources

31

https://basescripts.com/

B) const obj = {};

C) const obj = Object.create();

D) const obj = Object();

Answer: B) const obj = {};

Explanation: Using {} is the most common and concise way to create an object using
an object literal.

Question 2

How can you add a new property age with value 25 to the object user = {
name: "John" }?

A) user.age = 25;

B) user["age"] = 25;

C) Both A and B

D) add user.age = 25;

Answer: C) Both A and B

Explanation: You can add properties using either dot notation (user.age = 25;) or
bracket notation (user["age"] = 25;).

Question 3

What will be the output of the following code?

const person = {
name: "Anna",
greet: function() {

console.log(`Hello, my name is ${this.name}.`);
}

};
const greet = person.greet;

Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis Google Apps Script and
Workspace Resources

32

https://basescripts.com/

greet();

A) Hello, my name is Anna.

B) Hello, my name is undefined.

C) Hello, my name is .

D) Error

Answer: B) Hello, my name is undefined.

Explanation:When greet is called standalone, this refers to the global object
(window in browsers), which likely doesn't have a name property, resulting in
undefined.

Question 4

Which method can be used to convert a JavaScript object to a JSON string?

A) JSON.parse()

B) JSON.stringify()

C) JSON.toString()

D) JSON.convert()

Answer: B) JSON.stringify()

Explanation: JSON.stringify() converts a JavaScript object into a JSON string.

Question 5

What does the Object.create() method do?

A) Creates a new object with the specified prototype object and properties.

B) Creates a copy of an existing object.

C) Initializes a new object using a constructor function.

Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis Google Apps Script and
Workspace Resources

33

https://basescripts.com/

D) Merges two objects into one.

Answer: A) Creates a new object with the specified prototype object and properties.

Explanation: Object.create(proto) creates a new object with proto as its
prototype.

Question 6

Which of the following statements correctly uses destructuring to extract the
title and author from the book object?

const book = { title: "1984", author: "George Orwell", pages:
328 };

A) const title, author = book;

B) const { title, author } = book;

C) const [title, author] = book;

D) const title = book.title; const author = book.author;

Answer: B) const { title, author } = book;

Explanation: This syntax correctly uses object destructuring to extract title and
author from book.

Question 7

What will be the output of the following code?

const obj = { a: 1, b: 2 };
const clone = { ...obj };
clone.c = 3;
console.log(obj.c);

A) 3

B) undefined

Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis Google Apps Script and
Workspace Resources

34

https://basescripts.com/

C) Error

D) null

Answer: B) undefined

Explanation: Cloning creates a separate object. Adding c to clone does not affect
obj, so obj.c is undefined.

Question 8

Which of the following methods returns an array of a given object's own
enumerable property names?

A) Object.values()

B) Object.keys()

C) Object.entries()

D) Object.getOwnPropertyNames()

Answer: B) Object.keys()

Explanation: Object.keys(obj) returns an array of the object's own enumerable
property names.

Question 9

In JavaScript, which keyword is used to define a class?

A) function

B) class

C) def

D) object

Answer: B) class

Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis Google Apps Script and
Workspace Resources

35

https://basescripts.com/

Explanation: The class keyword is used to define a class in JavaScript (introduced in
ES6).

Question 10

Which of the following best describes the prototype chain in JavaScript?

A) A sequence of objects linked together to share properties and methods.

B) A function that serves as a blueprint for creating objects.

C) A built-in object that provides utility methods.

D) A special type of array used for storing data.

Answer: A) A sequence of objects linked together to share properties and methods.

Explanation: The prototype chain is a series of linked objects through which JavaScript
resolves property and method references.

13. Conclusion

Congratulations! You've completed the comprehensive guide to JavaScript Objects.
This guide has covered the fundamentals of objects, various methods to create and
manipulate them, understanding prototypes and inheritance, leveraging ES6 features,
and ensuring effective use through practical exercises and assessments.

Next Steps

1. Practice Regularly: Continuously create and manipulate objects to reinforce
your understanding.

2. Explore Advanced Topics: Dive deeper into concepts like Object-Oriented
Programming (OOP), design patterns, and memory management.

3. Build Projects: Apply your knowledge by building real-world applications that
heavily utilize objects.

4. Stay Updated: JavaScript evolves rapidly. Keep learning about the latest
features and best practices.

5. Join Communities: Engage with developer communities on platforms like Stack
Overflow, Reddit, or GitHub to collaborate and learn from others.

Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis Google Apps Script and
Workspace Resources

36

https://stackoverflow.com/
https://stackoverflow.com/
https://www.reddit.com/r/javascript/
https://github.com/
https://basescripts.com/

