
JavaScript Classes: Comprehensive Guide

JavaScript Classes: Comprehensive Guide 1
What are Classes in JavaScript? 2
Basic Syntax 2
Example: Define and Instantiate a Class 3
Class Methods and Properties 3

Example: Static Methods 3

Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis

1

https://basescripts.com/


Inheritance with Classes 3
Example: Class Inheritance 3

Private and Public Fields 4
Example: Private Fields 4

Getters and Setters 4
Example: Using Getters and Setters 5

Exercises 5
Exercise 1: Create a Vehicle Class 5
Exercise 2: Implement a Calculator Class 6
Exercise 3: Inheritance 6

Multiple-Choice Questions 7
Question 1: 7
Question 2: 7
Question 3: 7

Best Practices for Using Classes 8

JavaScript Classes provide a way to create reusable object templates using a modern syntax.
This guide covers the basics, advanced features, practical examples, exercises, and
multiple-choice questions to help you master JavaScript classes.

What are Classes in JavaScript?

Classes are syntactic sugar over JavaScript’s prototype-based inheritance model. They allow
you to define object templates with properties and methods.

Basic Syntax
class ClassName {
constructor(param1, param2) {
this.property1 = param1;
this.property2 = param2;

}
method1() {
console.log(this.property1);

}
}

● constructor: A special method for initializing object properties.
● this: Refers to the instance of the class.

Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis

2

https://basescripts.com/


Example: Define and Instantiate a Class
class Person {
constructor(name, age) {
this.name = name;
this.age = age;

}
greet() {
console.log(`Hi, my name is ${this.name} and I'm ${this.age} years

old.`);
}

}
const person1 = new Person("Alice", 30);
person1.greet(); // Output: Hi, my name is Alice and I'm 30 years old.

Class Methods and Properties

1. Instance Methods: Methods available on instances of the class.
2. Static Methods: Methods that belong to the class itself, not the instances.

Example: Static Methods
class MathHelper {
static add(a, b) {
return a + b;

}
}
console.log(MathHelper.add(5, 3)); // Output: 8

Inheritance with Classes

Classes support inheritance through the extends keyword. The super keyword calls the
parent class's constructor or methods.

Example: Class Inheritance
class Animal {
constructor(name) {
this.name = name;

}
speak() {
console.log(`${this.name} makes a noise.`);

Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis

3

https://basescripts.com/


}
}
class Dog extends Animal {
speak() {
super.speak();
console.log(`${this.name} barks.`);

}
}
const dog = new Dog("Rex");
dog.speak();
// Output:
// Rex makes a noise.
// Rex barks.

Private and Public Fields

JavaScript classes can define private and public fields.

Example: Private Fields
class BankAccount {
#balance = 0;
deposit(amount) {
this.#balance += amount;

}
getBalance() {
return this.#balance;

}
}
const account = new BankAccount();
account.deposit(100);
console.log(account.getBalance()); // Output: 100
// console.log(account.#balance); // Error: Private field '#balance'
must be declared in an enclosing class

● #balance: Denotes a private field accessible only within the class.

Getters and Setters

Getters and setters are used to define accessors for properties.

Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis

4

https://basescripts.com/


Example: Using Getters and Setters
class Rectangle {
constructor(width, height) {
this.width = width;
this.height = height;

}
get area() {
return this.width * this.height;

}
set dimensions({ width, height }) {
this.width = width;
this.height = height;

}
}
const rect = new Rectangle(10, 20);
console.log(rect.area); // Output: 200
rect.dimensions = { width: 5, height: 15 };
console.log(rect.area); // Output: 75

Exercises

Exercise 1: Create a Vehicle Class

1. Create a class Vehicle with properties make and model.
2. Add a method getDetails that prints make and model.

Solution:

class Vehicle {
constructor(make, model) {
this.make = make;
this.model = model;

}
getDetails() {
console.log(`Make: ${this.make}, Model: ${this.model}`);

}
}
const car = new Vehicle("Toyota", "Corolla");
car.getDetails(); // Output: Make: Toyota, Model: Corolla

Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis

5

https://basescripts.com/


Exercise 2: Implement a Calculator Class

1. Create a class Calculator with static methods add, subtract, multiply, and
divide.

2. Test the methods with sample inputs.

Solution:

class Calculator {
static add(a, b) {
return a + b;

}
static subtract(a, b) {
return a - b;

}
static multiply(a, b) {
return a * b;

}
static divide(a, b) {
return b !== 0 ? a / b : "Cannot divide by zero";

}
}
console.log(Calculator.add(5, 3)); // Output: 8
console.log(Calculator.divide(10, 2)); // Output: 5

Exercise 3: Inheritance

1. Create a parent class Employee with properties name and position.
2. Create a child class Manager that inherits from Employee and adds a method

announce.

Solution:

class Employee {
constructor(name, position) {
this.name = name;
this.position = position;

}
details() {
console.log(`${this.name} works as a ${this.position}`);

Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis

6

https://basescripts.com/


}
}
class Manager extends Employee {
announce() {
console.log(`${this.name} is a manager!`);

}
}
const manager = new Manager("John", "Manager");
manager.details(); // Output: John works as a Manager
manager.announce(); // Output: John is a manager!

Multiple-Choice Questions

Question 1:

What is the purpose of the constructor in a class?

1. To define class methods.
2. To initialize properties of the class.
3. To extend another class.
4. To create static methods.

Answer: 2. To initialize properties of the class.

Question 2:

Which keyword is used to inherit from another class in JavaScript?

1. implements
2. extends
3. inherits
4. prototype

Answer: 2. extends

Question 3:

How do you define a private field in a JavaScript class?

1. Use the private keyword.
2. Use the # symbol before the field name.
3. Prefix the field name with _.

Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis

7

https://basescripts.com/


4. Declare the field inside a method.

Answer: 2. Use the # symbol before the field name.

Best Practices for Using Classes

1. Encapsulation: Use private fields and methods to hide implementation details.
2. DRY Principle: Use inheritance to avoid duplicate code.
3. Static Methods: Use static methods for utility functions that don't depend on instance

data.
4. Meaningful Names: Use meaningful class and method names for readability.

Learn more HTML, CSS, JavaScript Web Development at https://basescripts.com/ Laurence Svekis

8

https://basescripts.com/

