
Welcome to Your 28-Day JavaScript
Journey! 🚀

Welcome! You're about to take your first steps into the exciting world of programming with
JavaScript, the language that powers the interactive web. This guide is designed to take you
from a complete beginner to someone with a solid, practical foundation in just 28 days. You
don't need any prior coding experience—just curiosity and a willingness to learn.

How This Guide Works

Our approach is simple: one day, one concept. Programming can seem overwhelming, so
we've broken it down into small, manageable daily lessons. Consistency is more important than
speed.

Get more content at https://basescripts.com/ Laurence Svekis Courses

1

https://basescripts.com/

Each day, you'll find the following structure:

●​ Today's Goal: A clear, one-sentence objective for the lesson.
●​ Explanation: A detailed but beginner-friendly breakdown of the day's topic. We use

analogies and simple terms to make sure everything clicks.
●​ Code Example: A practical, commented code snippet showing the concept in action.
●​ Exercise: A hands-on task for you to complete. This is the most important part! You

learn to code by writing code.
●​ Quiz Question: A quick question to test your understanding.
●​ Answer & Explanation: We don't just give you the answer; we explain why it's the right

one.
●​ AI Learning Prompt: A special prompt for you to use with an AI assistant like Gemini or

ChatGPT.

Your Strategy for Success

1.​ Be Consistent: Try to complete one lesson each day. A little bit of learning every day is
far more effective than a long session once a week.

2.​ Be Active, Not Passive: Don't just read. Type out the code examples yourself. Do the
exercises without peeking at the solution first. If you get stuck, that's normal—it's how
you learn! Try to solve the problem for a few minutes before seeking help.

3.​ Use Your AI Tutor: The AI Learning Prompts are your secret weapon. Think of your AI
assistant as a 24/7 personal tutor. When you finish a lesson, copy and paste the prompt
into the AI. It's designed to give you a deeper understanding, show you alternative
approaches, or explain related concepts. Don't be afraid to ask it follow-up questions!
For example, if you don't understand its answer, you can ask, "Can you explain that in a
simpler way?" or "Can you give me another example?"

By the end of these 28 days, you will understand the core concepts of programming, be able to
manipulate web pages, and have the confidence to start building your own simple projects.

Let's get started!

Get more content at https://basescripts.com/ Laurence Svekis Courses

2

https://basescripts.com/

Week 1: The Core Fundamentals
Day 1: Your First JavaScript Code
Today's Goal: Understand what JavaScript is, where it runs, and how to write your very first
instruction using console.log().

Explanation: JavaScript is the programming language that makes websites interactive. While
HTML structures a page and CSS styles it, JavaScript brings it to life. Every modern web
browser has a built-in JavaScript engine. We can interact with this engine directly through the
developer console, a tool that lets us write and test code in real-time. The most fundamental
command is console.log(), which tells the browser to "log" or print a message to the console. It's
the primary way developers check the status of their code and debug problems.

Code Example:​
​
// The console.log() function prints whatever you put inside its parentheses to the console.​
console.log("Hello, World!");​
​
// It works for numbers too. Note that numbers don't have quotes.​
console.log(42);​
​
// You can also do math directly inside it.​
console.log(10 + 5);​

Exercise: Open the developer console in your browser (usually F12 or Right-Click -> Inspect ->
Console). Write three separate console.log() statements: one that prints your name, one that
prints your favorite number, and one that prints the result of 20 * 5.

Quiz Question: A user visiting your website will see the output of console.log(). True or False?

Answer & Explanation: False. The developer console is a tool for developers, not for website
visitors. Information logged to the console is only visible to someone who has opened the
developer tools. It's like a mechanic's diagnostic screen, not a part of the car's dashboard.

AI Learning Prompt:Prompt to AI: "Explain the browser's developer console like I'm a
complete beginner. What are the three most important things I can do in the 'Console' tab while
learning JavaScript?"

Day 2: Comments & Code Readability
Today's Goal: Learn how to write comments to explain your code to yourself and others.

Explanation: Code is read far more often than it is written. Comments are notes in your code
that the JavaScript engine completely ignores. Their purpose is to explain why a piece of code
exists. There are two types: single-line comments, which start with //, and multi-line comments,

Get more content at https://basescripts.com/ Laurence Svekis Courses

3

https://basescripts.com/

which start with /* and end with */. Good comments don't state the obvious (e.g., // This is a
variable); they explain the intention or the reason behind a complex part of the code.

Code Example:​
// This is a single-line comment. It explains the next line of code.​
// The following line calculates the total price including tax.​
let total = price + (price * taxRate);​
​
/*​
 This is a multi-line comment.​
 It's useful for longer explanations or for temporarily​
 disabling a whole block of code without deleting it.​
 console.log("This line will not run.");​
*/​

Exercise: Write a single-line comment above a console.log() statement that explains what you
are printing. Then, write a multi-line comment that includes your name and the current date.

Quiz Question: Which of the following will cause an error in JavaScript?

a) // console.log("Hello");

b) /* This is a comment */

c) // This is a comment that spans two lines.

Answer & Explanation: (c). A single-line comment (//) only applies to the line it is on. If the text
wraps to a new line without another //, the JavaScript engine will try to execute it as code and
fail, causing an error.

AI Learning Prompt:Prompt to AI: "What are the best practices for writing comments in code?
Give me three examples of a 'bad' comment that states the obvious and three examples of a
'good' comment that explains the 'why'."

Day 3: Variables (let, const, var)
Today's Goal: Understand how to store and label data in memory using variables.

Explanation: A variable is like a labeled box where you can store a piece of information. This
lets you refer to the data by a descriptive name instead of using the raw data itself. In modern
JavaScript, we use two keywords to declare variables: let and const.

let: Use let for variables whose value might need to change later. Think "let it change."

const: Use const for variables (constants) whose value will never change. Think "constant." This
is generally preferred as it makes your code safer from accidental changes.

var: This is the old way of declaring variables. It has some quirky behavior and is generally

Get more content at https://basescripts.com/ Laurence Svekis Courses

4

https://basescripts.com/

avoided in modern code. You should always prefer let and const.

Code Example:​
​
// Use 'let' for a value that might change, like a user's score.​
let score = 0;​
console.log(score); // Prints 0​
score = 10; // The value is updated. This is allowed.​
console.log(score); // Prints 10​
​
// Use 'const' for a value that should never change, like a birth date.​
const birthYear = 1990;​
console.log(birthYear);​
// birthYear = 1991; // This would cause a TypeError! The code would stop.​

Exercise: Declare a const variable named projectName and set it to the string 'My Website'.
Declare a let variable named currentStatus and set it to the string 'In Progress'. Log both
variables to the console. Then, try to update currentStatus to 'Completed' and log it again.

Quiz Question: You are storing the value of pi (3.14159...). Which keyword should you use to
declare the variable and why?

Answer & Explanation: You should use const. The value of pi is a mathematical constant and
will never change. Using const ensures that its value cannot be accidentally reassigned
elsewhere in the code, which makes the program more predictable and reliable.

AI Learning Prompt:Prompt to AI: "Explain the technical differences between var, let, and
const related to 'scope' and 'hoisting'. Use a simple code example for each to show why let and
const were introduced to solve problems with var."

Day 4: The String Data Type
Today's Goal: Learn about the text-based data type called a string and how to combine strings.

Explanation: A string is any sequence of characters (letters, numbers, symbols) enclosed in
single quotes ('...'), double quotes ("..."), or backticks (`...`). It is JavaScript's way of representing
text. You can combine strings using the + operator, a process called concatenation.

Code Example:​
const singleQuoteString = 'Hello!';​
const doubleQuoteString = "World!";​
​
// Concatenation: combining strings​
const greeting = singleQuoteString + " " + doubleQuoteString; // "Hello! World!"​
console.log(greeting);​

Get more content at https://basescripts.com/ Laurence Svekis Courses

5

https://basescripts.com/

​
// Strings can have properties, like 'length'​
const myName = "Lars";​
console.log(myName.length); // Prints 4​

Exercise: Create two const string variables, one for your first name and one for your last name.
Create a third variable, fullName, by concatenating the first two with a space in between. Log
the fullName to the console.

Quiz Question: What will be the result of the following code? console.log("5" + "2");

Answer & Explanation: The result will be the string "52". When the + operator is used with two
strings, it performs concatenation, not mathematical addition. It joins the two strings together
end-to-end.

AI Learning Prompt:Prompt to AI: "Show me 3 common string methods in JavaScript besides
.length. Provide a simple code example and explanation for .toUpperCase(), .toLowerCase(),
and .slice()."

Day 5: The Number Data Type & Basic Math
Today's Goal: Understand the number data type and how to perform basic mathematical
operations.

Explanation: The number data type is used for any numerical value, including integers (e.g.,
10) and floating-point numbers (e.g., 3.14). JavaScript uses a standard set of arithmetic
operators to perform calculations:

+ (Addition)

- (Subtraction)

* (Multiplication)

/ (Division)

% (Modulo - gives the remainder of a division)​
JavaScript respects the standard mathematical order of operations (PEMDAS/BODMAS).

Code Example:​
const quantity = 5;​
const price = 10.50;​
​
const subtotal = quantity * price; // 52.5​
const tax = subtotal * 0.13; // 6.825​
const total = subtotal + tax; // 59.325​
​
console.log("Total cost is: " + total);​

Get more content at https://basescripts.com/ Laurence Svekis Courses

6

https://basescripts.com/

​
// Modulo example: find the remainder of 10 / 3​
const remainder = 10 % 3; // Result is 1​
console.log(remainder);​

Exercise: You have 25 cookies and want to share them equally among 4 friends. Calculate how
many cookies each friend gets and how many will be left over. Use the / and % operators and
log the results to the console.

Quiz Question: What is the result of 10 + 5 * 2?

Answer & Explanation: The result is 20. Following the order of operations, multiplication is
performed before addition. So, 5 * 2 is calculated first (which is 10), and then 10 + 10 is
calculated, resulting in 20.

AI Learning Prompt:Prompt to AI: "What is the difference between an integer and a
floating-point number in the context of programming? Also, explain what NaN means in
JavaScript and give me an example of a calculation that would result in NaN."

Day 6: The Boolean Data Type
Today's Goal: Learn about the true and false values that form the basis of all logic in
programming.

Explanation: A boolean is the simplest data type; it can only have one of two values: true or
false. That's it. Booleans are the foundation of decision-making in your code. You can think of
them as the answer to any yes-or-no question. Is the user logged in? true. Is the cart empty?
false. We will use booleans extensively in the coming days to control the flow of our programs.

Code Example:​
JavaScript​
let isLoggedIn = true;​
console.log("User is logged in: " + isLoggedIn);​
​
let hasAdminPrivileges = false;​
console.log("User is an admin: " + hasAdminPrivileges);​
​
// The result of a comparison is always a boolean​
const isFiveGreaterThanThree = 5 > 3;​
console.log(isFiveGreaterThanThree); // This will print 'true'​

Exercise: Create a const variable called isLearning and set it to true. Create another let
variable called isTired and set it to false. Log both variables to the console in a descriptive
sentence.

Get more content at https://basescripts.com/ Laurence Svekis Courses

7

https://basescripts.com/

Quiz Question: Which of the following is NOT a boolean value?

a) true

b) false

c) "true"

d) 5 < 2

Answer & Explanation: (c) "true". This is a string, not a boolean. The text inside the quotes is
"true", but because of the quotes, its data type is string. Option (d) is a comparison that
evaluates to the boolean value false.

AI Learning Prompt:Prompt to AI: "Explain the concepts of 'truthy' and 'falsy' values in
JavaScript. Give me a list of all the 6 falsy values and an example of how a non-boolean value
can be treated as true in an if statement."

Day 7: null & undefined
Today's Goal: Understand the difference between a variable that is empty on purpose (null)
and one that hasn't been given a value yet (undefined).

Explanation:

undefined: This is the default state of a variable that has been declared but has not yet been
assigned a value. It's JavaScript's way of saying, "I know this variable exists, but it has no
value."

null: This is a value that you, the programmer, assign to a variable to explicitly mean "no value"
or "empty." It's an intentional absence of any object value. Think of undefined as accidental
emptiness and null as intentional emptiness.

typeof: This is a special operator that tells you the data type of a variable.

Code Example:​
// This variable has been declared but not assigned a value.​
let userEmail;​
console.log(userEmail); // Prints 'undefined'​
​
// We explicitly set the user's selected theme to nothing.​
let selectedTheme = null;​
console.log(selectedTheme); // Prints 'null'​
​
// Using the 'typeof' operator​
console.log(typeof userEmail); // "undefined"​
console.log(typeof selectedTheme); // "object" (This is a famous, old bug in JS, but null is a primitive!)​
console.log(typeof "Hello"); // "string"​
console.log(typeof 100); // "number"​

Get more content at https://basescripts.com/ Laurence Svekis Courses

8

https://basescripts.com/

Exercise: Declare a let variable called favoriteFood without assigning it a value. Log it to the
console. On the next line, assign your favorite food to it as a string. Log it to the console again.

Quiz Question: What is the fundamental difference between null and undefined?

Answer & Explanation: undefined is a value automatically assigned by JavaScript to a variable
that has been declared but not initialized. null is a value that a programmer explicitly assigns to
a variable to signify "no value".

AI Learning Prompt:Prompt to AI: "The typeof null returning 'object' is a well-known bug in
JavaScript. Can you explain the history behind this bug and why it has never been fixed?"

Get more content at https://basescripts.com/ Laurence Svekis Courses

9

https://basescripts.com/

Week 2: Logic and Control Flow
Day 8: Comparison Operators
Today's Goal: Learn how to compare two values to produce a true or false result.

Explanation: Comparison operators are the foundation of decision-making. They let you ask
questions about the relationship between two values. The most important one is the strict
equality operator (===), which checks if two values are identical in both value and data type.
Its counterpart is the strict inequality operator (!==). For numbers, you can also use greater
than (>), less than (<), greater than or equal to (>=), and less than or equal to (<=). It's best
practice to always use the strict operators (=== and !==) instead of their loose counterparts (==
and !=) to avoid common bugs.

Code Example:​
​
const myAge = 30;​
const requiredAge = 18;​
​
console.log(myAge > requiredAge); // true, because 30 is greater than 18.​
​
// Strict equality checks value AND type.​
console.log(10 === 10); // true​
console.log(10 === "10"); // false, because a number is not the same type as a string.​
​
// Strict inequality​
console.log(5 !== 5); // false​
console.log(5 !== 10); // true​

Exercise: Create a const variable itemPrice and set it to 15. Create another let variable
moneyInWallet and set it to 20. Write console.log() statements to check if you have enough
money to buy the item and if the price is not equal to 10.

Quiz Question: What will console.log(7 >= "7"); output?

Answer & Explanation: true. The standard comparison operators (>=, >, <, <=) will attempt to
convert the string "7" into a number before making the comparison. Since the number 7 is
"greater than or equal to" the number 7, the result is true. This is a form of type coercion, which
we'll cover more later.

AI Learning Prompt:Prompt to AI: "Explain why JavaScript has both == (loose equality) and
=== (strict equality). Give me three real-world code examples where using == would cause an
unexpected bug that === would prevent."

Get more content at https://basescripts.com/ Laurence Svekis Courses

10

https://basescripts.com/

Day 9: Logical Operators
Today's Goal: Learn how to combine multiple boolean conditions to make more complex
decisions.

Explanation: Logical operators work with boolean (true/false) values. They are essential for
checking more than one condition at a time.

&& (AND): Returns true only if the conditions on both its left and right sides are true. Think: "this
AND that must be true."

|| (OR): Returns true if at least one of the conditions on its left or right side is true. Think: "either
this OR that must be true."

! (NOT): Flips a boolean value. It turns true into false and false into true. Think: "the opposite
of."

Code Example:​
​
const age = 25;​
const hasDriversLicense = true;​
​
// && (AND): Is the person old enough AND do they have a license?​
console.log(age >= 16 && hasDriversLicense); // true, because both are true.​
​
const hasCoupon = false;​
const isMember = true;​
​
// || (OR): Does the person get a discount?​
console.log(hasCoupon || isMember); // true, because one of them is true.​
​
// ! (NOT): Invert a boolean.​
let isLoggedIn = false;​
console.log(!isLoggedIn); // true​

Exercise: You're building a video game. Create two variables: playerHealth (set to 75) and
isInvincible (set to false). Write a single console.log statement that uses logical operators to
check if the player can take damage (i.e., their health is greater than 0 AND they are NOT
invincible). The expected output is true.

Quiz Question: What is the result of true || false && false?

Answer & Explanation: true. Logical operators have an order of precedence, just like math
operators. The && operator is evaluated before the || operator. So, false && false is evaluated
first, resulting in false. The expression then becomes true || false, which evaluates to true.

AI Learning Prompt:Prompt to AI: "Explain the concept of 'short-circuiting' in JavaScript
logical operators. Provide a code example for both && and || where short-circuiting prevents a

Get more content at https://basescripts.com/ Laurence Svekis Courses

11

https://basescripts.com/

function from being called."

Day 10: if Statements
Today's Goal: Learn how to execute a block of code only if a certain condition is met.

Explanation: The if statement is the most basic control flow structure. It allows your program to
make a decision. You provide it a condition inside parentheses (). If that condition evaluates to
true, the code inside the following curly braces {} will run. If the condition is false, the code
inside the curly braces is completely skipped, and the program continues on.

Code Example:​
​
const temperature = 32;​
​
// The condition is 'temperature > 30'. Since 32 > 30 is true...​
if (temperature > 30) {​
 // ...this block of code will run.​
 console.log("It's a hot day! Drink plenty of water.");​
}​
​
const cartIsEmpty = true;​
​
if (cartIsEmpty) {​
 console.log("Your shopping cart is empty.");​
}​

Exercise: Create a let variable userPassword and set its value to a string. Write an if statement
that checks if the password.length is greater than 8. If it is, log a message to the console saying
"Password is strong."

Quiz Question: What will be printed to the console from the following code?​
JavaScript​
let score = 50;​
if (score >= 90) {​
 console.log("Grade A");​
}​
console.log("End of program.");​

Answer & Explanation: Only "End of program." will be printed. The condition score >= 90
evaluates to false because 50 is not greater than or equal to 90. Therefore, the code block
containing console.log("Grade A"); is skipped entirely. The program then continues to the next
line after the if statement.

Get more content at https://basescripts.com/ Laurence Svekis Courses

12

https://basescripts.com/

AI Learning Prompt:Prompt to AI: "Explain the concept of 'truthy' and 'falsy' in JavaScript.
How can an if statement work with a condition that isn't a true boolean, like a number or a
string? Give me an example."

Day 11: else and else if Statements
Today's Goal: Expand on if statements to handle multiple conditions or a default "otherwise"
case.

Explanation:

else: An else statement provides a block of code that runs only when the original if condition is
false. It's the "otherwise" or "fallback" option.

else if: You can chain multiple conditions together. The program checks them in order from top
to bottom. As soon as it finds one that is true, it runs that block of code and then skips the rest
of the entire chain.

Code Example:​
​
const grade = 85;​
​
if (grade >= 90) {​
 console.log("You got an A!");​
} else if (grade >= 80) {​
 console.log("You got a B!"); // This block runs, and the chain stops.​
} else if (grade >= 70) {​
 console.log("You got a C.");​
} else {​
 console.log("You need to study more.");​
}​

Exercise: You're coding a traffic light. Create a let variable lightColor and set it to 'green'. Write
an if/else if/else chain. If the color is 'green', log "Go". If it's 'yellow', log "Slow down". Otherwise
(for red or any other value), log "Stop". Change the variable's value to test all conditions.

Quiz Question: In an if/else if/else chain, is it possible for two blocks of code to be executed?

Answer & Explanation: No, it is not possible. The entire structure is designed to execute at
most one block. It evaluates the conditions sequentially, and the very first one that results in true
gets its code block executed. After that, the program skips to the end of the entire chain. If no
conditions are true, the else block runs (if it exists).

AI Learning Prompt:Prompt to AI: "Show me how to rewrite a nested if statement (an if
statement inside another if statement) into a single if statement using the && logical operator.

Get more content at https://basescripts.com/ Laurence Svekis Courses

13

https://basescripts.com/

Which version is usually easier to read?"

Day 12: Template Literals
Today's Goal: Learn a modern and clean way to embed variables and expressions directly into
strings.

Explanation: Previously, if you wanted to combine strings with variables, you had to use
concatenation with the + operator. This can become messy and hard to read. Template Literals
(also called template strings) solve this. They are created using backticks (`) instead of single or
double quotes. Inside a template literal, you can embed any valid JavaScript expression (like a
variable or a calculation) by wrapping it in ${...}.

Code Example:​
​
const userName = "Alice";​
const itemCount = 3;​
const price = 10;​
​
// The old way (concatenation)​
const oldMessage = "Hello, " + userName + "! You have " + itemCount + " items. Your total is $" +
(itemCount * price) + ".";​
console.log(oldMessage);​
​
// The new, better way (template literals)​
const newMessage = `Hello, ${userName}! You have ${itemCount} items. Your total is $${itemCount *
price}.`;​
console.log(newMessage);​

Exercise: Create three variables: city, country, and population. Assign them appropriate values.
Using a template literal, create a single string that logs a sentence like: "Toronto is in Canada
and has a population of approximately 3 million."

Quiz Question: Which of the following is a valid template literal?

a) 'Hello, ${name}!'

b) "Hello, ${name}!"

c) `Hello, ${name}!`

d) (Hello, ${name}!)

Answer & Explanation: (c). Template literals are exclusively defined by using backticks (`).
Using single or double quotes will treat the ${name} part as literal text instead of embedding the
name variable's value.

Get more content at https://basescripts.com/ Laurence Svekis Courses

14

https://basescripts.com/

AI Learning Prompt:Prompt to AI: "Besides embedding variables, what is another major
advantage of using template literals over traditional strings in JavaScript? Show me a code
example that demonstrates this advantage."

Day 13: Type Coercion & The == Trap
Today's Goal: Understand how JavaScript can automatically change data types and why this
can be dangerous.

Explanation: Type Coercion is the process where JavaScript automatically converts a value
from one data type to another. For example, in 10 + "5", it converts the number 10 to a string
"10" and concatenates them to get "105". This happens a lot with the loose equality operator
(==), which will try to coerce values to be the same type before comparing them. This leads to
confusing results like 7 == "7" being true. To avoid this unpredictable behavior, you should
always use the strict equality operator (===), which does not perform type coercion.

Code Example:​
​
// Loose equality (`==`) performs type coercion.​
console.log(7 == "7"); // true. DANGEROUS! The string "7" is coerced to a number.​
console.log(0 == false); // true. DANGEROUS! The boolean false is coerced to 0.​
console.log("" == false); // true. DANGEROUS! The empty string is coerced to 0.​
​
// Strict equality (`===`) does NOT perform coercion. It's safer and predictable.​
console.log(7 === "7"); // false. CORRECT. A number is not a string.​
console.log(0 === false); // false. CORRECT. A number is not a boolean.​
console.log("" === false); // false. CORRECT. A string is not a boolean.​

Exercise: Predict the result (true or false) of the following comparisons without running the
code. Then, check your answers with console.log.

1 == true

1 === true

null == undefined

null === undefined

Quiz Question: Why is it generally recommended to use === over == in JavaScript?

Answer & Explanation: It is recommended because === (strict equality) provides a more
predictable and safer comparison. It checks for equality of both value and type without
performing any automatic type conversions. This prevents a whole class of common bugs that
arise from the unpredictable nature of =='s type coercion rules.

AI Learning Prompt:Prompt to AI: "Explain the specific rules the == operator uses to compare

Get more content at https://basescripts.com/ Laurence Svekis Courses

15

https://basescripts.com/

a string and a number. Then explain the rules it uses to compare a boolean and a number. Why
are these rules often considered confusing?"

Day 14: The switch Statement
Today's Goal: Learn an alternative to a long if/else if chain for comparing a single value against
many possibilities.

Explanation: A switch statement is a type of control flow that is specialized for checking a
single variable against a list of possible values. It's often cleaner and easier to read than a long
series of else if statements.

The switch keyword starts the block and specifies the value to be checked.

case keywords define the different values to check against.

The break keyword is crucial. It stops the execution inside the switch block. If you forget it, the
code will "fall through" and execute the next case as well!

default is an optional case that runs if none of the other cases match.

Code Example:​
​
const userRole = "admin";​
​
switch (userRole) {​
 case "admin":​
 console.log("You have full access.");​
 break; // Don't forget to break!​
 case "editor":​
 console.log("You can edit content.");​
 break;​
 case "viewer":​
 console.log("You can only view content.");​
 break;​
 default:​
 console.log("Unknown role. Access denied.");​
}​

Exercise: Write a switch statement. Create a variable dayOfWeek and set it to a number from 1
to 7. The switch statement should log "It's a weekday" for cases 1-5, and "It's the weekend" for
cases 6 and 7. You can achieve this by letting cases "fall through".

Quiz Question: What is the purpose of the break keyword inside a switch statement?

Answer & Explanation: The break keyword is used to exit the switch block once a matching

Get more content at https://basescripts.com/ Laurence Svekis Courses

16

https://basescripts.com/

case has been found and its code executed. If you omit break, the program will continue
executing the code in all the subsequent case blocks until it hits a break or the end of the switch
statement. This is known as "fall-through" and is usually unintended behavior.

AI Learning Prompt:Prompt to AI: "Show me an example of a switch statement where
'fall-through' (omitting the break keyword on purpose) is used to achieve a desired result that
would be more complex to write with an if/else statement."

Get more content at https://basescripts.com/ Laurence Svekis Courses

17

https://basescripts.com/

Week 3: Reusable Code and Data Structures
Day 15: Introduction to Functions
Today's Goal: Learn how to write reusable blocks of code called functions.

Explanation: A function is a block of code designed to perform a particular task. Think of it like
a recipe: you define the steps once, and then you can "call" that recipe by name whenever you
want to cook that dish, without having to write out the steps each time. This makes your code
more organized, less repetitive (following the DRY principle: Don't Repeat Yourself), and easier
to manage. We will start with a function declaration, which is the most common way to create
a named function.

Code Example:​
​
// DEFINE the function. This code doesn't run yet.​
// It's like writing down the recipe.​
function showWelcomeMessage() {​
 console.log("Welcome to our website!");​
 console.log("We are happy to have you here.");​
}​
​
// CALL the function. This is what actually executes the code inside.​
// It's like following the recipe to cook the dish.​
showWelcomeMessage(); // Will print both log messages.​
showWelcomeMessage(); // You can call it as many times as you want.​

Exercise: Define a function named displayGreeting that logs two lines to the console: "Hello
there!" and "Have a wonderful day." Then, call the function three times.

Quiz Question: What is the key difference between defining a function and calling a function?

Answer & Explanation: Defining a function is the act of creating it and specifying what code it
holds (function myFunction() { ... }). This is like writing a blueprint; the code inside doesn't run at
this stage. Calling a function (myFunction()) is the act of executing the code that was defined
inside the function. This is like using the blueprint to build something.

AI Learning Prompt:Prompt to AI: "What is the difference between a function 'declaration' and
a function 'expression' in JavaScript? Show me an example of each and explain the concept of
'hoisting' in relation to function declarations."

Day 16: Function Parameters and Arguments

Get more content at https://basescripts.com/ Laurence Svekis Courses

18

https://basescripts.com/

Today's Goal: Learn how to pass data into a function to make it more flexible and powerful.

Explanation: Right now, our functions do the exact same thing every time. To make them
dynamic, we can use parameters. A parameter is a special variable that acts as a placeholder
for a value that the function expects to receive when it is called. The actual value you pass into
the function when you call it is called an argument. This allows you to write one function that
can produce different results based on the input it's given.

Code Example:​
​
// 'userName' is a PARAMETER. It's a placeholder inside the function.​
function greetUser(userName) {​
 console.log(`Hello, ${userName}! Welcome back.`);​
}​
​
// "Alice" is an ARGUMENT. It's the actual value passed into the function.​
greetUser("Alice");​
​
// "Bob" is a different ARGUMENT. The function now uses this value.​
greetUser("Bob");​

Exercise: Create a function called showProductInfo that takes two parameters: productName
and price. Inside the function, log a message using a template literal, like: The price for the
product "${productName}" is $${price}. Call the function with two different sets of arguments.

Quiz Question: In the code calculateSum(5, 10);, are 5 and 10 parameters or arguments?

Answer & Explanation: They are arguments. Arguments are the actual values (5 and 10) that
are passed to a function when it is called. The parameters would be the variable names used
inside the function definition, for example: function calculateSum(num1, num2) { ... }.

AI Learning Prompt:Prompt to AI: "What happens in JavaScript if I call a function with more
arguments than it has parameters? What if I call it with fewer arguments? Provide code
examples for both scenarios."

Day 17: The return Statement

Today's Goal: Learn how to get a value out of a function so you can use it elsewhere in your
code.

Explanation: So far, our functions have only performed actions (like logging to the console). But
what if we need a function to perform a calculation and give us back the result? For this, we use
the return statement. When a return statement is executed, it immediately stops the function
and sends the specified value back to where the function was called. This allows you to store

Get more content at https://basescripts.com/ Laurence Svekis Courses

19

https://basescripts.com/

the function's output in a variable and use it for further calculations or actions.

Code Example:​
​
// This function calculates the area and RETURNS the result.​
function calculateArea(width, height) {​
 const area = width * height;​
 return area; // Sends the value of 'area' back out.​
}​
​
// Call the function and store the returned value in a new variable.​
const kitchenArea = calculateArea(10, 5); // kitchenArea is now 50​
const livingRoomArea = calculateArea(20, 15); // livingRoomArea is now 300​
​
console.log(`The total area is ${kitchenArea + livingRoomArea} square feet.`);​

Exercise: Write a function called convertToCelsius that takes one parameter, fahrenheit. The
function should calculate the Celsius temperature (formula: (F - 32) * 5/9) and return the result.
Call the function with 68 and store the returned value in a variable, then log it.

Quiz Question: What is the difference between console.log(result) inside a function and return
result?

Answer & Explanation: console.log(result) simply prints the value of result to the developer
console for viewing; it does not output the value from the function. The function's result cannot
be stored in another variable. return result stops the function and sends the value of result back
to the place where the function was called, allowing it to be assigned to a variable or used in
other expressions. A function that only logs a value technically returns undefined.

AI Learning Prompt:Prompt to AI: "Can a JavaScript function return multiple values? Explain
the common patterns for achieving this, such as returning an array or an object, with code
examples for each."

Day 18: Function Scope
Today's Goal: Understand that variables created inside a function are not accessible from
outside that function.

Explanation: Scope refers to where variables and functions can be accessed in your code. In
JavaScript, each function creates its own local scope. This means that any variable declared
with let or const inside a function is like a private note for that function only. It exists only while
the function is running and cannot be seen or used by any code outside of it. This is a very
important feature that prevents different parts of your program from accidentally interfering with
each other. Variables declared outside any function are in the global scope.

Get more content at https://basescripts.com/ Laurence Svekis Courses

20

https://basescripts.com/

Code Example:​
​
const globalVar = "I am global"; // This variable is in the global scope.​
​
function myScopeFunction() {​
 const localVar = "I am local"; // This variable is in the function's local scope.​
 console.log(globalVar); // Can access global variables from inside.​
 console.log(localVar); // Can access its own local variables.​
}​
​
myScopeFunction(); // This will log both messages.​
​
console.log(globalVar); // This works fine.​
// console.log(localVar); // This will cause a ReferenceError! The variable doesn't exist here.​

Exercise: Create a global variable userName and set it to your name. Then, create a function
createGreeting that declares a local variable greeting and sets it to "Hello". Inside the function,
log a message that combines greeting and userName. After calling the function, try to log the
greeting variable from the global scope and observe the error.

Quiz Question: If you declare a variable with let inside a function, can another function access
that variable?

Answer & Explanation: No. Each function has its own private, local scope. A variable declared
inside one function is completely isolated and cannot be accessed by any code outside of that
function, including other functions. This prevents naming conflicts and makes code more
modular and predictable.

AI Learning Prompt:Prompt to AI: "Explain the 'scope chain' in JavaScript. If a variable is not
found in the local scope, what happens next? Use a nested function (a function inside another
function) as an example to illustrate the process."

Day 19: Introduction to Arrays
Today's Goal: Learn how to store an ordered list of items in a single variable using an array.

Explanation: What if you need to store a list of 100 usernames? Creating 100 separate
variables would be a nightmare. An array solves this by letting you store multiple values in a
single, ordered collection. You create an array using square brackets [], with each item
separated by a comma. The items in an array are indexed, meaning they have a position
number. Crucially, array indexing starts at 0.

Code Example:​
​
// An array of strings.​

Get more content at https://basescripts.com/ Laurence Svekis Courses

21

https://basescripts.com/

const fruits = ["Apple", "Banana", "Cherry"];​
​
// Access elements by their index number.​
console.log(fruits[0]); // "Apple" (Index 0 is the first item)​
console.log(fruits[1]); // "Banana" (Index 1 is the second item)​
​
// You can find the number of items in an array with the .length property.​
console.log(fruits.length); // 3​
​
// You can change an item at a specific index.​
fruits[2] = "Blueberry";​
console.log(fruits); // ["Apple", "Banana", "Blueberry"]​

Exercise: Create an array called favoriteMovies and fill it with three of your favorite movies as
strings. Log the entire array to the console. Then, log just the second movie in the list. Finally,
update the third movie to a new one and log the entire array again.

Quiz Question: In the array const letters = ['a', 'b', 'c', 'd'];, what is the index of the item 'd'?

Answer & Explanation: The index is 3. Array indexing is zero-based, meaning the first element
is at index 0, the second is at index 1, the third at index 2, and the fourth at index 3.

AI Learning Prompt:Prompt to AI: "Can a JavaScript array hold different data types in the
same array (e.g., a number, a string, and a boolean)? Provide a code example and explain why
this is possible in JavaScript compared to some other programming languages."

Day 20: Basic Array Methods
Today's Goal: Learn how to modify arrays by adding and removing items using built-in
functions called methods.

Explanation: Arrays come with many useful built-in functions, called methods, that let you
manipulate them. A method is like a function that "belongs" to an object or an array. You call it
using dot notation (e.g., myArray.method()). Today we'll learn two of the most common methods:

.push(): Adds one or more items to the end of an array.

.pop(): Removes the last item from an array and returns it.

Code Example:​
​
const tasks = ["Wash dishes", "Do laundry"];​
​
// Use .push() to add an item to the end.​
console.log("Adding a task...");​
tasks.push("Take out trash");​

Get more content at https://basescripts.com/ Laurence Svekis Courses

22

https://basescripts.com/

console.log(tasks); // ["Wash dishes", "Do laundry", "Take out trash"]​
​
// Use .pop() to remove the last item.​
console.log("Completing the last task...");​
const completedTask = tasks.pop(); // 'completedTask' will be "Take out trash"​
console.log(`You completed: ${completedTask}`);​
console.log(tasks); // ["Wash dishes", "Do laundry"]​

Exercise: Create an array representing a shopping list with two items. First, use .push() to add
"Carrots" and "Milk" to the end of the list. Log the updated list. Then, use .pop() to remove the
last item and log both the list and the removed item to the console.

Quiz Question: If you have an empty array const arr = []; and you call arr.pop(), what will be the
result?

Answer & Explanation: The result will be undefined. The .pop() method is designed to remove
the last element. If the array is empty, there is no element to remove, so the method returns
undefined. It will not cause an error.

AI Learning Prompt:Prompt to AI: "Explain two more common array methods: .shift() and
.unshift(). How are they similar to .pop() and .push(), and how are they different? Provide a code
example."

Day 21: Introduction to Objects
Today's Goal: Learn how to store related data using key-value pairs in a structure called an
object.

Explanation: While arrays are great for ordered lists, they aren't descriptive. If you have ["Lars",
"Doe", 34], you don't know what each piece of data represents. An object solves this by storing
data in key-value pairs. It's like a dictionary or a label-maker for your data. You create an object
using curly braces {}. Each piece of data has a key (like a label or property name) followed by a
colon : and then its value. This makes your data self-describing and easy to understand.

Code Example:​
​
// An object representing a user.​
const user = {​
 firstName: "John", // 'firstName' is the key, "John" is the value.​
 lastName: "Doe",​
 age: 34,​
 isLoggedIn: true​
};​
​
// Access the data using dot notation (object.key).​

Get more content at https://basescripts.com/ Laurence Svekis Courses

23

https://basescripts.com/

console.log(user.firstName); // "John"​
console.log(`The user's age is: ${user.age}`);​
​
// You can also modify the value of a property.​
user.age = 35;​
console.log(`The user's new age is: ${user.age}`);​

Exercise: Create an object named car. Give it three properties (keys): make (string), model
(string), and year (number). Assign appropriate values. Log a sentence to the console using
these properties, such as: "I own a 2022 Honda Civic."

Quiz Question: In an object, what are the two parts of each entry called?

Answer & Explanation: They are called a key and a value. The key is a string that acts as the
identifier or label for the data. The value is the data itself, which can be any data type (string,
number, boolean, even another array or object). Together they form a key-value pair.

AI Learning Prompt:Prompt to AI: "Besides dot notation, what is the other way to access a
property in a JavaScript object? Show me an example using this alternative syntax and explain
a scenario where you must use it instead of dot notation."

Get more content at https://basescripts.com/ Laurence Svekis Courses

24

https://basescripts.com/

Week 4: Loops and Web Page Interaction
Day 22: Accessing Object Properties with Bracket Notation
Today's Goal: Learn the alternative way to access object properties and understand when it's
necessary.

Explanation: Yesterday, you learned to use dot notation (object.key) to access object
properties. There is a second way: bracket notation (object['key']). With bracket notation, the
key must be a string inside the brackets. While dot notation is often cleaner, bracket notation is
essential in two key situations:

When an object key has spaces or special characters (e.g., 'first-name').

When the key you want to access is stored in a variable.

Code Example:​
const user = {​
 "first name": "John", // A key with a space​
 job: "Developer"​
};​
​
// 1. Accessing a key with a space - dot notation fails!​
// console.log(user.first name); // This would cause a syntax error.​
console.log(user["first name"]); // "John" - Bracket notation works!​
​
// 2. Using a variable to determine which key to access.​
const keyToAccess = "job";​
console.log(user.keyToAccess); // undefined - Tries to find a key literally named "keyToAccess".​
console.log(user[keyToAccess]); // "Developer" - Correctly uses the variable's value.​

Exercise: Create an object called appSettings. Add a key named "version number" with a value
of 1.2. Add another key named theme with a value of "dark". First, log the version number using
bracket notation. Then, create a variable settingToChange and set it to "theme". Use this
variable and bracket notation to update the theme's value to "light". Log the entire object.

Quiz Question: You have an object const data = { 'item-id': 123 };. How would you access the
value 123?

Answer & Explanation: You must use bracket notation: data['item-id']. Because the key
"item-id" contains a hyphen (-), which is a special character (the subtraction operator), dot
notation (data.item-id) would be interpreted as data.item minus id and would fail.

AI Learning Prompt:Prompt to AI: "Give me a practical example of a function that takes an
object and a key (as a string) as arguments. Inside the function, it should use bracket notation to
dynamically access and return the value of that key from the object."

Get more content at https://basescripts.com/ Laurence Svekis Courses

25

https://basescripts.com/

Day 23: The for Loop
Today's Goal: Learn how to repeat an action a specific number of times using a for loop.

Explanation: A loop is a control structure used to repeat a block of code. The classic for loop is
perfect when you know exactly how many times you want to repeat an action. It consists of
three parts inside the parentheses, separated by semicolons:

Initializer: A statement executed once before the loop starts (e.g., let i = 0). This creates a
counter variable.

Condition: An expression checked before each repetition. If it's true, the loop runs. If it's false,
the loop stops (e.g., i < 5).

Incrementer: A statement executed after each repetition, usually to update the counter (e.g.,
i++, which means "add one to i").

Code Example:​
// This loop will run 5 times.​
// 1. Initialize 'i' to 0.​
// 2. Check if 'i' is less than 5. (0 < 5 is true)​
// 3. Run the code block.​
// 4. Increment 'i' to 1.​
// 5. Repeat from step 2 until the condition is false.​
for (let i = 0; i < 5; i++) {​
 console.log(`This is repetition number ${i + 1}`);​
}​
// Output:​
// This is repetition number 1​
// This is repetition number 2​
// This is repetition number 3​
// This is repetition number 4​
// This is repetition number 5​

Exercise: Write a for loop that logs the numbers from 10 down to 1.

Quiz Question: How many times will the message "Hello" be logged to the console in this loop?
for (let i = 1; i <= 3; i++) { console.log("Hello"); }

Answer & Explanation: 3 times.

i starts at 1. The condition 1 <= 3 is true, it logs "Hello". i becomes 2.

i is 2. The condition 2 <= 3 is true, it logs "Hello". i becomes 3.

i is 3. The condition 3 <= 3 is true, it logs "Hello". i becomes 4.

i is 4. The condition 4 <= 3 is false, and the loop terminates.

Get more content at https://basescripts.com/ Laurence Svekis Courses

26

https://basescripts.com/

AI Learning Prompt:Prompt to AI: "Explain what an infinite loop is. Show me an example of a
for loop that would accidentally run forever and explain which of the three parts (initializer,
condition, incrementer) is causing the problem."

Day 24: Looping Through Arrays

Today's Goal: Combine for loops and arrays to perform an action on every single item in a list.

Explanation: One of the most common uses for a for loop is to iterate over an array. You can
access each element of the array one by one. The standard pattern is to initialize a counter i at
0 (the first index of the array) and continue the loop as long as i is less than the array's .length.
Inside the loop, you can use the counter variable i with bracket notation (myArray[i]) to get the
element at the current position.

Code Example:​
const fruits = ["Apple", "Banana", "Cherry", "Date"];​
​
// The loop will run as long as 'i' is less than fruits.length (which is 4).​
for (let i = 0; i < fruits.length; i++) {​
 // On each pass, 'i' will be 0, then 1, then 2, then 3.​
 const currentFruit = fruits[i];​
 console.log(`The fruit at index ${i} is ${currentFruit}.`);​
}​

Exercise: Create an array of numbers, for example, [10, 20, 30, 40, 50]. Write a for loop that
iterates through the array and calculates the sum of all the numbers. You'll need a separate let
variable outside the loop to hold the running total. Log the final sum after the loop is finished.

Quiz Question: Why is it better to use i < array.length as the condition instead of a hard-coded
number like i < 5 when looping over an array?

Answer & Explanation: Using i < array.length makes your code dynamic and robust. If you
later add or remove items from the array, the loop will automatically adjust to the new length. If
you had hard-coded a number, your loop would either not go through all the items or try to
access an index that doesn't exist, which could cause an error (undefined).

AI Learning Prompt:Prompt to AI: "Besides a standard for loop, what is a for...of loop in
JavaScript? Show me how to rewrite a loop that iterates over an array using the for...of syntax
and explain the advantages."

Day 25: The while Loop

Get more content at https://basescripts.com/ Laurence Svekis Courses

27

https://basescripts.com/

Today's Goal: Learn how to use a while loop to repeat code as long as a condition is true,
without a preset counter.

Explanation: A while loop is simpler than a for loop. It only has one part: a condition. The loop
will continuously execute the code block as long as the condition evaluates to true. This is
useful when you don't know in advance how many times you need to loop. The key is to ensure
that something inside the loop eventually changes the condition to false, otherwise you will
create an infinite loop.

Code Example:​
​
let diceRoll = 0;​
let attempts = 0;​
// Keep looping as long as the dice roll is not a 6.​
while (diceRoll !== 6) {​
 // Math.random() gives a number between 0 and 1.​
 // We scale it and round down to get a number between 1 and 6.​
 diceRoll = Math.floor(Math.random() * 6) + 1;​
 attempts++;​
 console.log(`Attempt ${attempts}: You rolled a ${diceRoll}`);​
}​
console.log(`Success! It took you ${attempts} attempts to roll a 6.`);​

Exercise: Create a let variable count and set it to 1. Write a while loop that continues as long as
count is less than or equal to 5. Inside the loop, log the value of count and then increment it by
one.

Quiz Question: What is the most critical thing to remember when writing a while loop to avoid
an infinite loop?

Answer & Explanation: The most critical thing is to ensure that some action inside the loop's
code block will eventually cause the loop's condition to become false. This is usually done
by incrementing a counter, changing a variable's value, or updating the state that the condition
is checking. Without this, the condition will remain true forever.

AI Learning Prompt:Prompt to AI: "What is a do...while loop in JavaScript? How is it different
from a regular while loop? Provide a code example of a situation where a do...while loop would
be more appropriate."

Day 26: Introduction to the DOM
Today's Goal: Understand what the DOM is and how it represents an HTML document as a
tree of objects that JavaScript can manipulate.

Explanation: The Document Object Model (DOM) is a programming interface for web

Get more content at https://basescripts.com/ Laurence Svekis Courses

28

https://basescripts.com/

documents. When a browser loads a web page, it creates a model of that page's structure. It
represents the HTML document as a tree-like structure of objects. Each HTML tag (like <p>,
<h1>, <div>) becomes an "object" or "node" in this tree. The very top of the tree is the document
object, which is your main entry point. JavaScript can access and manipulate this document
object and all the nodes within it to dynamically change the page's content, structure, and style.

Code Example: (Conceptual - no code to run, just HTML to visualize)​
​
<!DOCTYPE html>​
<html>​
 <head>​
 <title>My Page</title>​
 </head>​
 <body>​
 <h1>Main Heading</h1>​
 <p>A paragraph of text.</p>​
 </body>​
</html>​
​
The DOM tree for this HTML would look something like this:

document

<html>

<head>

<title>

<body>

<h1>

<p>

Exercise: Look at a simple HTML file you've created. On a piece of paper or in a text editor, try
to draw the DOM tree structure for it, starting with the <html> tag and nesting the other tags
inside.

Quiz Question: In the context of the DOM, what does the document object represent?

Answer & Explanation: The document object represents the entire HTML document loaded
in the browser. It is the root node of the DOM tree and serves as the main entry point for all
JavaScript interactions with the page. To select, change, or add anything to the page, you
almost always start with the document object.

AI Learning Prompt:Prompt to AI: "Explain the difference between the DOM and the HTML
source code. If I use JavaScript to change the text of a heading, does the original .html file on
the server change?"

Get more content at https://basescripts.com/ Laurence Svekis Courses

29

https://basescripts.com/

Day 27: Selecting DOM Elements
Today's Goal: Learn how to use JavaScript to find and select specific HTML elements from the
DOM.

Explanation: Before you can modify an element, you need to select it. JavaScript provides
methods on the document object for this. Two of the most common and powerful methods are:

document.getElementById('some-id'): This is the fastest and most reliable method. It selects
the one element that has a specific, unique id attribute.

document.querySelector('some-selector'): This is more versatile. It selects the first element
that matches a given CSS selector (e.g., 'h1', '.my-class', '#my-id'). You can use any selector
you would use in a CSS file.

Code Example: (You'll need an HTML file linked to your JS file for this)​
​
<h1 id="main-title">Welcome!</h1>​
<p class="content">This is a paragraph.</p>​
​
// script.js​
// 1. Select the h1 using its ID.​
const mainTitle = document.getElementById("main-title");​
console.log(mainTitle); // Logs the h1 element object​
​
// 2. Select the p using its class with querySelector.​
const paragraph = document.querySelector(".content");​
console.log(paragraph); // Logs the p element object​

Exercise: Create a simple HTML file with a <div> that has the ID container and a <button> that
has the class btn. In your JavaScript file, use getElementById to select the div and
querySelector to select the button. Log both selected elements to the console.

Quiz Question: What is the main difference between getElementById and querySelector when
selecting an element by its ID (e.g., id="title")?

Answer & Explanation: getElementById('title') takes only the ID name as a string.
querySelector('#title') requires the full CSS selector, which includes the hash symbol (#) to
indicate it's an ID. While both can select the same element, querySelector is more flexible as it
can also select elements by class, tag name, or other complex CSS selectors.

AI Learning Prompt:Prompt to AI: "What is document.querySelectorAll() and how is it different
from document.querySelector()? Provide a code example where you would need to use
querySelectorAll()."

Get more content at https://basescripts.com/ Laurence Svekis Courses

30

https://basescripts.com/

Day 28: Modifying DOM Elements
Today's Goal: After selecting an element, learn how to change its content and style.

Explanation: Once you have an element stored in a variable, you can modify its properties.
Three of the most common properties to change are:

.textContent: Gets or sets the text content of an element. This is the safest way to change text
as the browser does not parse it as HTML.

.innerHTML: Gets or sets the HTML content inside an element. This is more powerful but
should be used with caution, as it can create security risks if you insert untrusted user input.

.style: This property is an object that lets you directly change the CSS styling of an element
(e.g., .style.color, .style.backgroundColor).

Code Example: (Uses the same HTML from Day 27)​
// script.js​
​
// Select the h1 element​
const mainTitle = document.getElementById("main-title");​
​
// Change its text content​
mainTitle.textContent = "Hello, JavaScript!";​
​
// Change its style​
mainTitle.style.color = "blue";​
mainTitle.style.backgroundColor = "lightgray";​

Exercise: Create an HTML page with a <p> tag that has an id of "status-message" and initially
contains the text "Loading...". Write JavaScript to select this element and change its textContent
to "Welcome!" and its style.color to "green".

Quiz Question: What is the primary security risk of using .innerHTML instead of .textContent to
insert data from a user?

Answer & Explanation: The primary risk is a Cross-Site Scripting (XSS) attack. If a user
provides malicious input that includes a <script> tag, using .innerHTML will cause the browser
to execute that script. This could be used to steal data or perform unwanted actions.
.textContent treats all input as plain text, so any <script> tags are simply displayed as text and
are not executed, making it much safer for handling user-provided content.

AI Learning Prompt:Prompt to AI: "Explain how to add and remove CSS classes from a DOM
element using JavaScript's element.classList.add() and element.classList.remove(). Why is this
often a better approach than directly changing element.style properties?"

Get more content at https://basescripts.com/ Laurence Svekis Courses

31

https://basescripts.com/

Congratulations! Your 28-Day JavaScript Adventure is
Complete! 🎉
You did it! For the past 28 days, you've shown up, put in the work, and transformed from a
complete beginner into someone who can write functional, interactive JavaScript code. That's a
huge accomplishment, and you should be incredibly proud.

Let's take a moment to look back at how far you've come. You started with the absolute basics,
learning about variables and data types. You learned how to control the flow of your programs
with logic, loops, and functions. You organized complex data with arrays and objects. Finally,
you bridged the gap between pure logic and a real webpage by learning to manipulate the
DOM, bringing static pages to life.

You now have the single most important skill a developer needs: a solid foundation.

Where Do You Go From Here?
The journey of a developer is one of lifelong learning. The skills you've built over the last four
weeks have prepared you for the next exciting steps.

1. Practice, Practice, Practice

The most crucial step now is to apply what you've learned. The concepts will only truly stick
when you use them to solve new problems.

●​ Revisit the Exercises: Go back to the exercises from this guide and try to complete
them again without looking at the answers.

●​ Build Small Projects: Start building things on your own. This is where the real learning
begins. Some great first projects are:

○​ A simple "To-Do List" application.
○​ A "Random Quote Generator" that fetches quotes from a free API.
○​ A basic calculator.
○​ An interactive quiz.

●​ Read Other People's Code: Look at simple projects on sites like GitHub to see how
other developers solve problems.

2. Deepen Your Knowledge

You now have the context to explore more advanced topics in vanilla JavaScript (that's plain
JS without any libraries).

●​ More Array Methods: Learn about powerful methods like .map(), .filter(), and .reduce().
●​ Asynchronous JavaScript: Dive deeper into Promises and async/await to handle tasks

Get more content at https://basescripts.com/ Laurence Svekis Courses

32

https://basescripts.com/

like API calls more effectively.
●​ ES6+ Features: Explore other modern JavaScript features that make your code cleaner

and more powerful.

3. Explore the Ecosystem

Once you feel very comfortable with vanilla JavaScript, you can start looking into the wider
ecosystem of tools that developers use.

●​ Frameworks and Libraries: You'll hear about tools like React, Vue, and Angular. They
are powerful, but having a strong JS foundation first (which you now do) is the key to
mastering them.

The most important thing is to stay curious, keep building, and not be afraid to break things—it's
the best way to learn. You've successfully completed the first and most challenging part of your
programming journey.

Get more content at https://basescripts.com/ Laurence Svekis Courses

33

https://basescripts.com/

	Welcome to Your 28-Day JavaScript Journey! 🚀
	How This Guide Works
	Your Strategy for Success
	Week 1: The Core Fundamentals
	Day 1: Your First JavaScript Code
	Day 2: Comments & Code Readability
	Day 3: Variables (let, const, var)
	Day 4: The String Data Type
	Day 5: The Number Data Type & Basic Math
	Day 6: The Boolean Data Type
	Day 7: null & undefined

	Week 2: Logic and Control Flow
	Day 8: Comparison Operators
	Day 9: Logical Operators
	Day 10: if Statements
	Day 11: else and else if Statements
	Day 12: Template Literals
	Day 13: Type Coercion & The == Trap
	Day 14: The switch Statement

	Week 3: Reusable Code and Data Structures
	Day 15: Introduction to Functions
	Day 16: Function Parameters and Arguments
	Day 17: The return Statement
	Day 18: Function Scope
	Day 19: Introduction to Arrays
	Day 20: Basic Array Methods
	Day 21: Introduction to Objects

	Week 4: Loops and Web Page Interaction
	Day 22: Accessing Object Properties with Bracket Notation
	Day 23: The for Loop
	Day 24: Looping Through Arrays
	Day 25: The while Loop
	Day 26: Introduction to the DOM
	Day 27: Selecting DOM Elements
	Day 28: Modifying DOM Elements

	Congratulations! Your 28-Day JavaScript Adventure is Complete! 🎉
	Where Do You Go From Here?
	1. Practice, Practice, Practice
	2. Deepen Your Knowledge
	3. Explore the Ecosystem

