

Turn any folder of Google Docs into an AI-powered knowledge assistant

AI assistants are becoming a core part of modern workflows—and thanks to Google Apps Script
+ Gemini, you can now build your own internal chatbot that answers questions using only the
content stored inside a Google Drive folder.

This article walks you through a full Retrieval-Augmented Generation (RAG) solution built with
Apps Script, including:

●​ How it loads and processes files from a folder
●​ How it chunk-indexes content
●​ How it scores and retrieves relevant segments

Get more Apps Script Content at https://basescripts.com/ by Laurence Svekis

https://basescripts.com/

●​ How it sends structured context to Gemini
●​ How the webapp interface works
●​ How to generate demo files to test your bot​

At the end, you’ll have a fully working Drive Folder RAG Chatbot running entirely inside
Google Apps Script—no servers, no databases, no external hosting required.

⭐ What This Chatbot Can Do
Once deployed, the chatbot allows the user to:

✔ Select a Google Drive folder​
 ✔ Automatically ingest all Google Docs + .txt files​
 ✔ Break them into indexed chunks​
 ✔ Score each chunk for relevance to the query​
 ✔ Retrieve the best matches​
 ✔ Send contextual info to Gemini​
 ✔ Receive an answer based strictly on the folder contents

This means you can build:

●​ Knowledge base assistants
●​ Policy chatbots
●​ SOP/documentation bots
●​ Multi-file onboarding assistants
●​ FAQ bots
●​ Multi-document research agents
●​ Course content assistants

Everything runs inside Apps Script.

🚀 The Script (Explained)
Below is the exact code, fully annotated and explained.

1. Configuration & Constants
const GEMINI_MODEL_ID = 'gemini-2.0-flash';

Get more Apps Script Content at https://basescripts.com/ by Laurence Svekis

https://basescripts.com/

const MAX_FILES = 15;

const MAX_CHARS_PER_FILE = 20000;

const CHUNK_SIZE = 800;

const CHUNK_OVERLAP = 200;

const MAX_CONTEXT_CHARS = 15000;

What this does:

●​ gemini-2.0-flash → fastest, most cost-efficient model supported on v1beta
generateContent

●​ MAX_FILES → limits how many Drive files are scanned
●​ MAX_CHARS_PER_FILE → prevents massive docs from overloading Gemini
●​ CHUNK_SIZE → each chunk is about 800 characters
●​ CHUNK_OVERLAP → gives Gemini natural continuity
●​ MAX_CONTEXT_CHARS → caps total text sent in a single API call

This keeps your RAG system fast, predictable, and safe.

2. Web App Entry Point
function doGet() {

 return HtmlService.createHtmlOutputFromFile('IndexRagFolder')

 .setTitle('Drive Folder RAG Chatbot')

 .setXFrameOptionsMode(HtmlService.XFrameOptionsMode.ALLOWALL);

}

This loads the HTML UI and allows the chatbot to run inside a browser.

3. API Key Retrieval
function getGeminiApiKey_() {

Get more Apps Script Content at https://basescripts.com/ by Laurence Svekis

https://basescripts.com/

 const props = PropertiesService.getScriptProperties();

 const key = props.getProperty('GEMINI_API_KEY');

 if (!key) throw new Error('GEMINI_API_KEY is not set.');

 return key;

}

Stores your API key securely in Script Properties.

4. Selecting & Validating the Folder
function extractFolderId_(input) {

 const trimmed = input.trim();

 const urlMatch = trimmed.match(/\/folders\/([-\w]{10,})/);

 if (urlMatch) return urlMatch[1];

 const idMatch = trimmed.match(/[-\w]{10,}/);

 if (idMatch) return idMatch[0];

 return trimmed;

}

This makes the UI flexible—you can paste either:

●​ A folder URL
●​ Or just the folder ID​

Apps Script extracts the correct value automatically.

5. Saving the User’s Active Folder

Get more Apps Script Content at https://basescripts.com/ by Laurence Svekis

https://basescripts.com/

function setActiveFolder(folderInput) {

 const folderId = extractFolderId_(folderInput);

 const folder = DriveApp.getFolderById(folderId);

PropertiesService.getUserProperties().setProperty('ACTIVE_FOLDER_ID',
folderId);

 return {

 id: folderId,

 name: folder.getName(),

 url: 'https://drive.google.com/drive/folders/' + folderId

 };

}

Why use UserProperties?

●​ Each user can have a different folder
●​ No shared global state
●​ Works for multi-user deployments

6. The Heart of the System: chatWithFolder()
This is where the RAG magic happens.

Step 1 — Load files from the folder

const chunks = buildChunksFromFolder_(folder, queryTerms);

This fetches the text from:

●​ Google Docs

Get more Apps Script Content at https://basescripts.com/ by Laurence Svekis

https://basescripts.com/

●​ Plain text files​

Step 2 — Generate meaningful chunks

Each file is broken into overlapping slices:

const fileChunks = chunkText_(text, CHUNK_SIZE, CHUNK_OVERLAP);

Chunking prevents Gemini from receiving giant walls of text.

Step 3 — Score each chunk

const score = scoreChunk_(chunkText, queryTerms);

This simple keyword overlap scoring:

●​ Is lightning fast
●​ Has no external dependencies
●​ Avoids expensive embedding models
●​ Works surprisingly well for short text​

Step 4 — Build a context window

if (context.length + c.text.length > MAX_CONTEXT_CHARS) break;

context += '\n\n[Source: ' + c.fileName + ']\n' + c.text;

This produces a clean, human-readable memory structure:

[Source: File A]

...text...

[Source: File B]

...text...

Gemini loves this format.

Get more Apps Script Content at https://basescripts.com/ by Laurence Svekis

https://basescripts.com/

Step 5 — Send the context to Gemini

const promptText =

 systemInstruction +

 "\n\n=== CONTEXT START ===\n" + context +

 "\n=== CONTEXT END ===\n\nUser question: " + userMessage;

The system instruction enforces constraints:

●​ Only answer from folder content
●​ Say “I don’t see that…” when unsupported
●​ Cite document names​

This ensures zero hallucinations.

Step 6 — Return the final answer

return { answer: answer };

The UI displays this as a chat bubble.

🎛 Build Chunks + Score Terms
Chunking:

function chunkText_(text, size, overlap)

This ensures:

●​ Smooth transitions
●​ Better semantic matching
●​ Less fragmentation​

Scoring:

Get more Apps Script Content at https://basescripts.com/ by Laurence Svekis

https://basescripts.com/

function scoreChunk_(chunkText, queryTerms)

Scores based on token frequency overlap—simple, fast, effective.

🧪 Generating “Demo Files”
The script includes a function:

function createDemoFilesInDemoFolder()

This automatically creates a folder called:

demo files

And populates it with:

●​ Product Overview
●​ Onboarding Checklist
●​ Support FAQ
●​ Team Communication Guidelines​

Why this is useful:

●​ Instantly test RAG
●​ No manual document creation required
●​ Reproducible testing for debugging​

🖥 The Web UI
The file IndexRagFolder.html creates:

✔ A clean chat UI​
 ✔ A folder selection box​
 ✔ Realtime status messages​

Get more Apps Script Content at https://basescripts.com/ by Laurence Svekis

https://basescripts.com/

 ✔ Message bubbles​
 ✔ Scrolling message history

No frameworks needed—pure HTML, CSS, and client-side Apps Script calls.

🎉 Final Result
You now have a fully working:

Drive Folder RAG Chatbot (Apps Script + Gemini)

✔ Multi-file context ingestion​
 ✔ Chunking & relevance scoring​
 ✔ Controlled context window​
 ✔ Webapp chatbot interface​
 ✔ Logging & error handling​
 ✔ Auto-generated demo documents​
 ✔ Fast responses using gemini-2.0-flash

This system can handle:

●​ Knowledge bases
●​ SOP libraries
●​ Help centers
●​ Team documentation
●​ Course material
●​ Internal onboarding
●​ Multi-file research

All running entirely inside Google Apps Script.

Get more Apps Script Content at https://basescripts.com/ by Laurence Svekis

https://basescripts.com/

	⭐ What This Chatbot Can Do
	🚀 The Script (Explained)
	1. Configuration & Constants
	2. Web App Entry Point
	3. API Key Retrieval
	4. Selecting & Validating the Folder
	5. Saving the User’s Active Folder
	6. The Heart of the System: chatWithFolder()
	Step 1 — Load files from the folder
	Step 2 — Generate meaningful chunks
	Step 3 — Score each chunk
	Step 4 — Build a context window
	Step 5 — Send the context to Gemini
	Step 6 — Return the final answer

	🎛 Build Chunks + Score Terms
	Chunking:
	Scoring:

	🧪 Generating “Demo Files”
	🖥 The Web UI
	🎉 Final Result
	Drive Folder RAG Chatbot (Apps Script + Gemini)

