BUILD A
DRIVE FOLDER
RAG CHATBOT

USING APPS SCRIPT + GEMINI

Google Apps Script

Turn any folder of Google Docs into an Al-powered knowledge assistant

Al assistants are becoming a core part of modern workflows—and thanks to Google Apps Script
+ Gemini, you can now build your own internal chatbot that answers questions using only the
content stored inside a Google Drive folder.

This article walks you through a full Retrieval-Augmented Generation (RAG) solution built with
Apps Script, including:

e How it loads and processes files from a folder

e How it chunk-indexes content
e How it scores and retrieves relevant segments

Get more Apps Script Content at hitps://basescripts.com/ by Laurence Svekis

https://basescripts.com/

e How it sends structured context to Gemini
e How the webapp interface works
e How to generate demo files to test your bot

At the end, you'll have a fully working Drive Folder RAG Chatbot running entirely inside
Google Apps Script—no servers, no databases, no external hosting required.

What This Chatbot Can Do

Once deployed, the chatbot allows the user to:

v Select a Google Drive folder

v Automatically ingest all Google Docs + .txt files

v Break them into indexed chunks

v’ Score each chunk for relevance to the query

v Retrieve the best matches

v Send contextual info to Gemini

v Receive an answer based strictly on the folder contents

This means you can build:

Knowledge base assistants
Policy chatbots
SOP/documentation bots
Multi-file onboarding assistants
FAQ bots

Multi-document research agents
Course content assistants

Everything runs inside Apps Script.

%’ The Script (Explained)

Below is the exact code, fully annotated and explained.

1. Configuration & Constants

const GEMINI_MODEL_ID = 'gemini-2.0-flash';

Get more Apps Script Content at hitps://basescripts.com/ by Laurence Svekis

https://basescripts.com/

const MAX_FILES = 15;

const MAX_CHARS_PER_FILE = 20000;
const CHUNK_SIZE = 800;

const CHUNK_OVERLAP = 200;

const MAX_CONTEXT_CHARS = 15000;

What this does:

e gemini-2.0-flash — fastest, most cost-efficient model supported on v1ibeta
generateContent

MAX_FILES — limits how many Drive files are scanned
MAX_CHARS_PER_FILE — prevents massive docs from overloading Gemini
CHUNK_SIZE — each chunk is about 800 characters

CHUNK_OVERLAP — gives Gemini natural continuity

MAX_CONTEXT_CHARS — caps total text sent in a single API call

This keeps your RAG system fast, predictable, and safe.

2. Web App Entry Point
function doGet() {
return HtmlService.createHtmlOutputFromFile('IndexRagFolder")
.setTitle('Drive Folder RAG Chatbot')

.setXFrameOptionsMode (HtmlService.XFrameOptionsMode .ALLOWALL);

This loads the HTML Ul and allows the chatbot to run inside a browser.

3. API Key Retrieval

function getGeminiApiKey_() {

Get more Apps Script Content at hitps://basescripts.com/ by Laurence Svekis

https://basescripts.com/

const props = PropertiesService.getScriptProperties();
const key = props.getProperty('GEMINI_API_KEY');
if ('key) throw new Error('GEMINI_API_KEY is not set.');

return key;

Stores your API key securely in Script Properties.

4. Selecting & Validating the Folder

function extractFolderId_(input) {
const trimmed = input.trim();
const urlMatch = trimmed.match(/\/folders\/([-\w]{10,})/);
if (urlMatch) return urlMatch[1];
const idMatch = trimmed.match(/[-\w]{18,}/);
if (idMatch) return idMatch[@];

return trimmed;

This makes the Ul flexible—you can paste either:

e Afolder URL
e Or just the folder ID

Apps Script extracts the correct value automatically.

5. Saving the User’s Active Folder

Get more Apps Script Content at hitps://basescripts.com/ by Laurence Svekis

https://basescripts.com/

function setActiveFolder(folderInput) {
const folderId = extractFolderId_(folderInput);

const folder = DriveApp.getFolderById(folderId);

PropertiesService.getUserProperties().setProperty('ACTIVE_FOLDER_ID',
folderId);

return {
id: folderId,
name: folder.getName(),

url: 'https://drive.google.com/drive/folders/' + folderId

Hs

Why use UserProperties?

e Each user can have a different folder
e No shared global state
e Works for multi-user deployments

6. The Heart of the System: chatWithFolder()

This is where the RAG magic happens.

Step 1 — Load files from the folder

const chunks = buildChunksFromFolder_(folder, queryTerms);

This fetches the text from:

e Google Docs

Get more Apps Script Content at hitps://basescripts.com/ by Laurence Svekis

https://basescripts.com/

e Plain text files

Step 2 — Generate meaningful chunks
Each file is broken into overlapping slices:

const fileChunks = chunkText_(text, CHUNK_SIZE, CHUNK_OVERLAP);

Chunking prevents Gemini from receiving giant walls of text.

Step 3 — Score each chunk

const score = scoreChunk_(chunkText, queryTerms);

This simple keyword overlap scoring:

Is lightning fast

Has no external dependencies
Avoids expensive embedding models
Works surprisingly well for short text

Step 4 — Build a context window
if (context.length + c.text.length > MAX_CONTEXT_CHARS) break;

context += '\n\n[Source: ' + c.fileName + ']\n' + c.text;

This produces a clean, human-readable memory structure:
[Source: File A]

...text. ..

[Source: File B]

..ootext. ..

Gemini loves this format.

Get more Apps Script Content at hitps://basescripts.com/ by Laurence Svekis

https://basescripts.com/

Step 5 — Send the context to Gemini
const promptText =
systemInstruction +
"\n\n=== CONTEXT START ===\n" + context +

"\n=== CONTEXT END ===\n\nUser question: " + userMessage;

The system instruction enforces constraints:

e Only answer from folder content
e Say “l don’t see that...” when unsupported
e Cite document names

This ensures zero hallucinations.

Step 6 — Return the final answer

return { answer: answer };

The Ul displays this as a chat bubble.

¢2 Build Chunks + Score Terms
Chunking:

function chunkText_(text, size, overlap)

This ensures:

e Smooth transitions
e Better semantic matching
e Less fragmentation

Scoring:

Get more Apps Script Content at hitps://basescripts.com/ by Laurence Svekis

https://basescripts.com/

function scoreChunk_(chunkText, queryTerms)

Scores based on token frequency overlap—simple, fast, effective.

Generating “Demo Files”

The script includes a function:

function createDemoFilesInDemoFolder ()

This automatically creates a folder called:

demo files

And populates it with:

Product Overview

Onboarding Checklist

Support FAQ

Team Communication Guidelines

Why this is useful:

e |Instantly test RAG
e No manual document creation required
e Reproducible testing for debugging

M The Web Ul

The file IndexRagFolder.html creates:
v’ A clean chat Ul

v A folder selection box
v Realtime status messages

Get more Apps Script Content at hitps://basescripts.com/ by Laurence Svekis

https://basescripts.com/

v Message bubbles
v Scrolling message history

No frameworks needed—pure HTML, CSS, and client-side Apps Script calls.

£&: Final Result

You now have a fully working:

Drive Folder RAG Chatbot (Apps Script + Gemini)

v Multi-file context ingestion

v’ Chunking & relevance scoring

v’ Controlled context window

v Webapp chatbot interface

v Logging & error handling

v Auto-generated demo documents

v Fast responses using gemini-2.6-flash

This system can handle:

Knowledge bases
SORP libraries

Help centers

Team documentation
Course material
Internal onboarding
Multi-file research

All running entirely inside Google Apps Script.

Get more Apps Script Content at hitps://basescripts.com/ by Laurence Svekis

https://basescripts.com/

	⭐ What This Chatbot Can Do
	🚀 The Script (Explained)
	1. Configuration & Constants
	2. Web App Entry Point
	3. API Key Retrieval
	4. Selecting & Validating the Folder
	5. Saving the User’s Active Folder
	6. The Heart of the System: chatWithFolder()
	Step 1 — Load files from the folder
	Step 2 — Generate meaningful chunks
	Step 3 — Score each chunk
	Step 4 — Build a context window
	Step 5 — Send the context to Gemini
	Step 6 — Return the final answer

	🎛 Build Chunks + Score Terms
	Chunking:
	Scoring:

	🧪 Generating “Demo Files”
	🖥 The Web UI
	🎉 Final Result
	Drive Folder RAG Chatbot (Apps Script + Gemini)

