

100 Node.js Coding Snippets

1) Basic “Hello World” HTTP server​ 3
2) Minimal server with routing (no frameworks)​ 3
3) Read JSON body from a request​ 3
4) Parse query string parameters​ 4
5) Serve a static file​ 5
6) Return JSON response​ 5
7) Environment variables + fallback defaults​ 5
8) Simple logger middleware pattern (framework-free)​ 6
9) Handle uncaught errors safely​ 6
10) Read a text file (async/await)​ 7
11) Write a file (atomic-ish pattern)​ 7
12) Append to a log file​ 7
13) List files in a directory​ 8
14) Ensure a directory exists​ 8
15) Join paths safely across OSes​ 8
16) Read a JSON file safely​ 8
17) Create a simple CLI argument parser​ 9
18) Prompt the user in terminal​ 9

1

19) Exit with a specific error code​ 10
20) Measure performance timing​ 10
21) Create an EventEmitter​ 10
22) Debounce a function (useful for events)​ 11
23) Throttle a function​ 11
24) Basic cron-like interval job​ 11
25) Promise timeout wrapper​ 12
26) Retry wrapper with backoff​ 12
27) Make an HTTP GET request (built-in fetch)​ 12
28) JSON fetch helper​ 13
29) POST JSON with fetch​ 13
30) URL building safely​ 13
31) Basic TCP server​ 14
32) Create a WebSocket server (requires ws)​ 14
33) Hash a password (requires bcrypt)​ 14
34) Create a JWT (requires jsonwebtoken)​ 15
35) Verify a JWT​ 15
36) Simple Express server​ 15
37) Express JSON body parsing​ 16
38) Express error handler​ 16
39) Serve static files in Express​ 16
40) CORS in Express (requires cors)​ 17
41) Rate limiting (requires express-rate-limit)​ 17
42) Validate input with Zod​ 17
43) Read config from .env (dotenv)​ 18
44) Connect to MongoDB (mongodb driver)​ 18
45) Postgres query (pg)​ 18
46) SQLite quick DB (better-sqlite3)​ 19
47) Create a simple in-memory cache​ 19
48) TTL cache (expires entries)​ 20
49) Stream a large file download​ 20
50) Compress response with gzip (built-in)​ 20
51) Create a readable stream from text​ 21
52) Pipeline streams with error handling​ 21
53) CSV parsing (csv-parse)​ 22
54) Generate UUIDs (built-in)​ 22
55) Hash content with SHA-256​ 22
56) Encrypt/decrypt (AES-GCM) (concept demo)​ 22
57) Generate a secure random token​ 23
58) Validate password strength (simple)​ 23
59) Simple file upload server (raw multipart is hard—use multer)​ 24

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

2

60) Basic unit test with node:test​ 24
61) Mock timers quickly (simple approach)​ 25
62) Read process memory usage​ 25
63) Read CPU info​ 25
64) Worker threads (CPU-heavy tasks)​ 25
65) Cluster mode (multi-process web server)​ 26
66) Graceful shutdown pattern​ 26
67) Simple healthcheck endpoint​ 26
68) Structured logging (JSON)​ 27
69) Generate an OpenAPI-ish response shape (simple)​ 27
70) Pagination helper​ 27
71) Validate/normalize an email​ 28
72) Safe JSON stringify (handles circular refs)​ 28
73) Parse a date safely​ 28
74) Simple in-memory job queue​ 29
75) Limit concurrency for async tasks​ 29
76) Basic file watcher​ 30
77) Spawn a child process​ 30
78) Exec a shell command (careful!)​ 30
79) Serve SSE (Server-Sent Events)​ 31
80) Basic cookie parsing (no deps)​ 31
81) Set a cookie header​ 32
82) Simple CSRF token idea (concept)​ 32
83) Base64 encode/decode​ 32
84) File checksum​ 32
85) Validate JSON schema quickly (Ajv)​ 33
86) Create an LRU cache (quick)​ 33
87) Simple “once” helper​ 34
88) Validate required env vars​ 34
89) Simple config object with types​ 34
90) Basic request ID middleware (Express)​ 35
91) Input sanitization (basic)​ 35
92) Validate a URL safely​ 35
93) Basic file download with fetch + stream to disk​ 36
94) Parse a JSON Lines (NDJSON) file​ 36
95) Simple metrics counter​ 36
96) Memory leak guard: max listeners​ 37
97) ESM __dirname equivalent​ 37
98) Simple HTML escaping for output safety​ 37
99) Validate port + start server safely​ 38
100) One-file “API + static” server combo​ 38

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

3

1) Basic “Hello World” HTTP server
import http from "node:http";

http.createServer((req, res) => {
 res.writeHead(200, {"Content-Type": "text/plain"});
 res.end("Hello from Node!\n");
}).listen(3000);

What it does: Starts a basic HTTP server on port 3000.​
 Use it for: Quick sanity checks, learning request/response basics.

2) Minimal server with routing (no frameworks)
import http from "node:http";

http.createServer((req, res) => {
 if (req.url === "/") return res.end("Home");
 if (req.url === "/health") return res.end("OK");
 res.writeHead(404); res.end("Not Found");
}).listen(3000);

What it does: Routes by URL with if statements.​
 Use it for: Tiny services, prototypes, understanding routing fundamentals.

3) Read JSON body from a request
import http from "node:http";

function readJson(req) {
 return new Promise((resolve, reject) => {
 let data = "";
 req.on("data", chunk => data += chunk);
 req.on("end", () => {

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

4

 try { resolve(JSON.parse(data || "{}")); }
 catch (e) { reject(e); }
 });
 });
}

http.createServer(async (req, res) => {
 if (req.method === "POST" && req.url === "/echo") {
 try {
 const body = await readJson(req);
 res.setHeader("Content-Type", "application/json");
 return res.end(JSON.stringify(body));
 } catch {
 res.writeHead(400); return res.end("Invalid JSON");
 }
 }
 res.writeHead(404); res.end("Not Found");
}).listen(3000);

What it does: Buffers incoming chunks, parses JSON safely.​
 Use it for: Building APIs without Express.

4) Parse query string parameters
import http from "node:http";
import { URL } from "node:url";

http.createServer((req, res) => {
 const url = new URL(req.url, "http://localhost");
 const name = url.searchParams.get("name") ?? "friend";
 res.end(`Hi ${name}`);
}).listen(3000);

What it does: Extracts query params like ?name=Lars.​
 Use it for: Search/filter endpoints.

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

5

5) Serve a static file
import http from "node:http";
import fs from "node:fs";
import path from "node:path";

http.createServer((req, res) => {
 if (req.url === "/") {
 const filePath = path.join(process.cwd(), "index.html");
 fs.createReadStream(filePath)
 .on("error", () => { res.writeHead(404); res.end("Missing
file"); })
 .pipe(res);
 return;
 }
 res.writeHead(404); res.end("Not Found");
}).listen(3000);

What it does: Streams index.html to the browser.​
 Use it for: Simple demo servers.

6) Return JSON response
import http from "node:http";

http.createServer((req, res) => {
 const payload = { ok: true, time: new Date().toISOString() };
 res.writeHead(200, { "Content-Type": "application/json" });
 res.end(JSON.stringify(payload));
}).listen(3000);

What it does: Sends JSON with correct header.​
 Use it for: API endpoints.

7) Environment variables + fallback defaults

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

6

const PORT = Number(process.env.PORT ?? 3000);
const NODE_ENV = process.env.NODE_ENV ?? "development";

console.log({ PORT, NODE_ENV });

What it does: Reads env vars safely with defaults.​
 Use it for: Configuring servers across dev/staging/prod.

8) Simple logger middleware pattern (framework-free)
function withLogging(handler) {
 return (req, res) => {
 const start = Date.now();
 res.on("finish", () => {
 console.log(req.method, req.url, res.statusCode,
`${Date.now()-start}ms`);
 });
 handler(req, res);
 };
}

What it does: Wraps a handler to log timing/status.​
 Use it for: Observability in any Node server.

9) Handle uncaught errors safely
process.on("unhandledRejection", (err) => {
 console.error("Unhandled rejection:", err);
});

process.on("uncaughtException", (err) => {
 console.error("Uncaught exception:", err);
 process.exit(1);
});

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

7

What it does: Catches unexpected errors and logs them.​
 Use it for: Prevent silent crashes (still fix root cause).

10) Read a text file (async/await)
import { readFile } from "node:fs/promises";

const text = await readFile("notes.txt", "utf8");
console.log(text);

What it does: Reads file contents asynchronously.​
 Use it for: Config files, templates, data loading.

11) Write a file (atomic-ish pattern)
import { writeFile, rename } from "node:fs/promises";

const tmp = "data.json.tmp";
await writeFile(tmp, JSON.stringify({ saved: true }, null, 2),
"utf8");
await rename(tmp, "data.json");

What it does: Writes to temp, then renames (reduces partial writes).​
 Use it for: Saving state safely.

12) Append to a log file
import { appendFile } from "node:fs/promises";

await appendFile("app.log", `[${new Date().toISOString()}] started\n`,
"utf8");

What it does: Adds text to end of file.​
 Use it for: Lightweight logging.

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

8

13) List files in a directory
import { readdir } from "node:fs/promises";

const files = await readdir("./src", { withFileTypes: true });
console.log(files.filter(f => f.isFile()).map(f => f.name));

What it does: Reads directory entries and filters by type.​
 Use it for: Scanning folders for builds/tools.

14) Ensure a directory exists
import { mkdir } from "node:fs/promises";

await mkdir("./output", { recursive: true });

What it does: Creates folder(s) if missing.​
 Use it for: Exports, generated files, cache dirs.

15) Join paths safely across OSes
import path from "node:path";

const fullPath = path.join(process.cwd(), "data", "users.json");
console.log(fullPath);

What it does: Handles \ vs / differences properly.​
 Use it for: Any file path work.

16) Read a JSON file safely
import { readFile } from "node:fs/promises";

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

9

async function readJsonFile(file) {
 const raw = await readFile(file, "utf8");
 return JSON.parse(raw);
}

const config = await readJsonFile("config.json");
console.log(config);

What it does: Reads and parses JSON from disk.​
 Use it for: App configs, fixtures, data.

17) Create a simple CLI argument parser
const args = process.argv.slice(2);
const flags = Object.fromEntries(args.map(a => {
 const [k, v="true"] = a.replace(/^--/, "").split("=");
 return [k, v];
}));

console.log(flags);

What it does: Parses node app.js --name=Lars --debug.​
 Use it for: Tiny CLI tools without dependencies.

18) Prompt the user in terminal
import readline from "node:readline";

const rl = readline.createInterface({ input: process.stdin, output:
process.stdout });

const answer = await new Promise(resolve => rl.question("Your name? ",
resolve));
rl.close();

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

10

console.log(`Hello ${answer}`);

What it does: Reads user input interactively.​
 Use it for: CLI wizards, setup scripts.

19) Exit with a specific error code
console.error("Something went wrong");
process.exit(2);

What it does: Stops the process and signals failure.​
 Use it for: CI scripts, CLIs.

20) Measure performance timing
console.time("job");
await new Promise(r => setTimeout(r, 250));
console.timeEnd("job");

What it does: Prints elapsed time for labeled block.​
 Use it for: Quick profiling.

21) Create an EventEmitter
import { EventEmitter } from "node:events";

const bus = new EventEmitter();
bus.on("saved", (id) => console.log("Saved:", id));
bus.emit("saved", 123);

What it does: Publishes/subscribes to events.​
 Use it for: Decoupling modules, internal app events.

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

11

22) Debounce a function (useful for events)
function debounce(fn, ms=200) {
 let t;
 return (...args) => {
 clearTimeout(t);
 t = setTimeout(() => fn(...args), ms);
 };
}

What it does: Delays execution until activity stops.​
 Use it for: Rate-limiting frequent triggers.

23) Throttle a function
function throttle(fn, ms=200) {
 let last = 0;
 return (...args) => {
 const now = Date.now();
 if (now - last >= ms) { last = now; fn(...args); }
 };
}

What it does: Runs at most once every ms.​
 Use it for: Preventing log spam, limiting expensive work.

24) Basic cron-like interval job
setInterval(() => {
 console.log("Running job:", new Date().toISOString());
}, 60_000);

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

12

What it does: Runs every minute.​
 Use it for: Polling, cleanup jobs (simple cases).

25) Promise timeout wrapper
function withTimeout(promise, ms=2000) {
 return Promise.race([
 promise,
 new Promise((_, rej) => setTimeout(() => rej(new
Error("Timeout")), ms))
]);
}

What it does: Fails a promise if it takes too long.​
 Use it for: Network calls, long tasks.

26) Retry wrapper with backoff
async function retry(fn, tries=3, delay=200) {
 let err;
 for (let i = 0; i < tries; i++) {
 try { return await fn(); }
 catch (e) { err = e; await new Promise(r => setTimeout(r, delay *
(i+1))); }
 }
 throw err;
}

What it does: Retries a failing async operation.​
 Use it for: Flaky network/database calls.

27) Make an HTTP GET request (built-in fetch)
const res = await fetch("https://api.github.com");

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

13

console.log(res.status, await res.text());

What it does: Calls a URL using Node’s fetch.​
 Use it for: APIs, integrations, web scraping (respect terms).

28) JSON fetch helper
async function fetchJson(url, opts) {
 const res = await fetch(url, opts);
 if (!res.ok) throw new Error(`HTTP ${res.status}`);
 return res.json();
}

What it does: Fetches and validates response, parses JSON.​
 Use it for: Cleaner API calls.

29) POST JSON with fetch
const res = await fetch("https://example.com/api", {
 method: "POST",
 headers: { "Content-Type": "application/json" },
 body: JSON.stringify({ name: "Lars" })
});
console.log(res.status);

What it does: Sends JSON payload to an endpoint.​
 Use it for: Writing API clients.

30) URL building safely
const u = new URL("https://example.com/search");
u.searchParams.set("q", "node js");
u.searchParams.set("page", "2");
console.log(u.toString());

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

14

What it does: Prevents broken query strings/encoding bugs.​
 Use it for: API requests, links.

31) Basic TCP server
import net from "node:net";

net.createServer((socket) => {
 socket.write("Welcome!\n");
 socket.on("data", d => socket.write(`Echo: ${d}`));
}).listen(4000);

What it does: Listens for raw TCP connections.​
 Use it for: Custom protocols, learning networking.

32) Create a WebSocket server (requires ws)
// npm i ws
import { WebSocketServer } from "ws";

const wss = new WebSocketServer({ port: 8080 });
wss.on("connection", (ws) => {
 ws.send("hello");
 ws.on("message", (msg) => ws.send(`echo: ${msg}`));
});

What it does: Real-time push messaging.​
 Use it for: Live dashboards, chat, multiplayer games.

33) Hash a password (requires bcrypt)
// npm i bcrypt

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

15

import bcrypt from "bcrypt";

const hash = await bcrypt.hash("secret", 12);
const ok = await bcrypt.compare("secret", hash);
console.log({ hash, ok });

What it does: Securely hashes and verifies passwords.​
 Use it for: Authentication systems.

34) Create a JWT (requires jsonwebtoken)
// npm i jsonwebtoken
import jwt from "jsonwebtoken";

const token = jwt.sign({ userId: 123 }, process.env.JWT_SECRET, {
expiresIn: "1h" });
console.log(token);

What it does: Creates a signed token for auth.​
 Use it for: Session-less APIs.

35) Verify a JWT
import jwt from "jsonwebtoken";

const payload = jwt.verify(token, process.env.JWT_SECRET);
console.log(payload);

What it does: Validates token signature + expiration.​
 Use it for: Protecting routes.

36) Simple Express server

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

16

// npm i express
import express from "express";

const app = express();
app.get("/health", (_, res) => res.json({ ok: true }));
app.listen(3000);

What it does: Minimal Express app with a route.​
 Use it for: Most Node web APIs.

37) Express JSON body parsing
import express from "express";
const app = express();

app.use(express.json());
app.post("/echo", (req, res) => res.json(req.body));
app.listen(3000);

What it does: Parses incoming JSON into req.body.​
 Use it for: REST APIs.

38) Express error handler
app.use((err, req, res, next) => {
 console.error(err);
 res.status(500).json({ error: "Internal error" });
});

What it does: Centralizes error responses.​
 Use it for: Consistent API behavior.

39) Serve static files in Express

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

17

import express from "express";
const app = express();

app.use(express.static("public"));
app.listen(3000);

What it does: Serves public/* as web assets.​
 Use it for: Hosting frontend builds.

40) CORS in Express (requires cors)
// npm i cors
import cors from "cors";
app.use(cors({ origin: "https://your-site.com" }));

What it does: Allows cross-site requests.​
 Use it for: Frontend calling your API.

41) Rate limiting (requires express-rate-limit)
// npm i express-rate-limit
import rateLimit from "express-rate-limit";

app.use(rateLimit({ windowMs: 60_000, max: 100 }));

What it does: Limits requests per IP.​
 Use it for: Basic abuse protection.

42) Validate input with Zod
// npm i zod
import { z } from "zod";

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

18

const schema = z.object({ email: z.string().email() });
const parsed = schema.parse({ email: "test@example.com" });
console.log(parsed);

What it does: Validates and parses data with good errors.​
 Use it for: Request validation, config validation.

43) Read config from .env (dotenv)
// npm i dotenv
import "dotenv/config";

console.log(process.env.DB_URL);

What it does: Loads environment variables from .env.​
 Use it for: Local dev configuration.

44) Connect to MongoDB (mongodb driver)
// npm i mongodb
import { MongoClient } from "mongodb";

const client = new MongoClient(process.env.MONGO_URL);
await client.connect();
const db = client.db("app");
const users = db.collection("users");
console.log(await users.findOne({}));
await client.close();

What it does: Connects and queries MongoDB.​
 Use it for: Document databases, flexible schemas.

45) Postgres query (pg)

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

19

// npm i pg
import pg from "pg";
const { Pool } = pg;

const pool = new Pool({ connectionString: process.env.DATABASE_URL });
const { rows } = await pool.query("SELECT now() AS time");
console.log(rows[0]);

What it does: Runs SQL in Postgres.​
 Use it for: Relational data and transactions.

46) SQLite quick DB (better-sqlite3)
// npm i better-sqlite3
import Database from "better-sqlite3";

const db = new Database("app.db");
db.exec("CREATE TABLE IF NOT EXISTS notes(id INTEGER PRIMARY KEY, text
TEXT)");
db.prepare("INSERT INTO notes(text) VALUES (?)").run("hello");
console.log(db.prepare("SELECT * FROM notes").all());

What it does: Embedded database, no server needed.​
 Use it for: Desktop tools, prototypes, local caching.

47) Create a simple in-memory cache
const cache = new Map();

function getCached(key, compute) {
 if (cache.has(key)) return cache.get(key);
 const val = compute();
 cache.set(key, val);
 return val;
}

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

20

What it does: Stores computed values by key.​
 Use it for: Expensive computations, repeated lookups.

48) TTL cache (expires entries)
const cache = new Map();

function setTTL(key, value, ms) {
 cache.set(key, value);
 setTimeout(() => cache.delete(key), ms).unref?.();
}

What it does: Deletes cached entries after time.​
 Use it for: Token caching, short-lived data.

49) Stream a large file download
import fs from "node:fs";
import http from "node:http";

http.createServer((req, res) => {
 res.writeHead(200, { "Content-Type": "application/octet-stream" });
 fs.createReadStream("big.zip").pipe(res);
}).listen(3000);

What it does: Streams file without loading into memory.​
 Use it for: Large downloads, media serving.

50) Compress response with gzip (built-in)
import http from "node:http";
import zlib from "node:zlib";

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

21

http.createServer((req, res) => {
 const gz = zlib.createGzip();
 res.writeHead(200, { "Content-Encoding": "gzip" });
 gz.pipe(res);
 gz.end("Compressed response!");
}).listen(3000);

What it does: Sends gzip-compressed text.​
 Use it for: Bandwidth savings.

51) Create a readable stream from text
import { Readable } from "node:stream";

const stream = Readable.from(["one\n", "two\n", "three\n"]);
stream.pipe(process.stdout);

What it does: Streams chunks as if it were a file.​
 Use it for: Streaming generated content.

52) Pipeline streams with error handling
import { pipeline } from "node:stream/promises";
import fs from "node:fs";
import zlib from "node:zlib";

await pipeline(
 fs.createReadStream("input.txt"),
 zlib.createGzip(),
 fs.createWriteStream("input.txt.gz")
);

What it does: Safely connects streams and propagates errors.​
 Use it for: File transforms, compression, ETL.

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

22

53) CSV parsing (csv-parse)
// npm i csv-parse
import { parse } from "csv-parse/sync";

const records = parse("a,b\n1,2\n3,4\n", { columns: true });
console.log(records);

What it does: Parses CSV into objects.​
 Use it for: Import tools, data pipelines.

54) Generate UUIDs (built-in)
import { randomUUID } from "node:crypto";
console.log(randomUUID());

What it does: Creates a unique identifier.​
 Use it for: IDs, tokens, correlation IDs.

55) Hash content with SHA-256
import { createHash } from "node:crypto";

const hash = createHash("sha256").update("hello").digest("hex");
console.log(hash);

What it does: Creates a checksum/hash.​
 Use it for: Integrity checks, deduping, fingerprints.

56) Encrypt/decrypt (AES-GCM) (concept demo)

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

23

import { randomBytes, createCipheriv, createDecipheriv } from
"node:crypto";

const key = randomBytes(32);
const iv = randomBytes(12);

function encrypt(text) {
 const cipher = createCipheriv("aes-256-gcm", key, iv);
 const enc = Buffer.concat([cipher.update(text, "utf8"),
cipher.final()]);
 return { enc, tag: cipher.getAuthTag() };
}
function decrypt(enc, tag) {
 const decipher = createDecipheriv("aes-256-gcm", key, iv);
 decipher.setAuthTag(tag);
 return Buffer.concat([decipher.update(enc),
decipher.final()]).toString("utf8");
}

What it does: Demonstrates authenticated encryption.​
 Use it for: Protecting secrets at rest (be careful with key/iv management).

57) Generate a secure random token
import { randomBytes } from "node:crypto";
const token = randomBytes(32).toString("hex");
console.log(token);

What it does: Creates a cryptographically strong token.​
 Use it for: Password resets, API keys (store hashed).

58) Validate password strength (simple)
function isStrong(pw) {

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

24

 return pw.length >= 12 && /[A-Z]/.test(pw) && /[a-z]/.test(pw) &&
/\d/.test(pw);
}

What it does: Checks basic complexity rules.​
 Use it for: Signup validation (prefer zxcvbn for better).

59) Simple file upload server (raw multipart is hard—use
multer)
// npm i express multer
import express from "express";
import multer from "multer";

const upload = multer({ dest: "uploads/" });
const app = express();

app.post("/upload", upload.single("file"), (req, res) => {
 res.json({ savedAs: req.file.filename, original:
req.file.originalname });
});
app.listen(3000);

What it does: Handles multipart uploads easily.​
 Use it for: Upload endpoints.

60) Basic unit test with node:test
import test from "node:test";
import assert from "node:assert/strict";

test("adds numbers", () => {
 assert.equal(2 + 3, 5);
});

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

25

What it does: Runs a test without extra libraries.​
 Use it for: Simple testing built-in.

61) Mock timers quickly (simple approach)
await new Promise(r => setTimeout(r, 50)); // test waits

What it does: Delays in async tests.​
 Use it for: Timing-sensitive code (better: fake timers in a test runner).

62) Read process memory usage
console.log(process.memoryUsage());

What it does: Shows heap/ RSS usage.​
 Use it for: Investigating leaks/perf.

63) Read CPU info
import os from "node:os";
console.log(os.cpus().length);

What it does: Gets number of CPU cores.​
 Use it for: Choosing concurrency limits.

64) Worker threads (CPU-heavy tasks)
import { Worker } from "node:worker_threads";

const worker = new Worker(new URL("./worker.js", import.meta.url), {
type: "module" });
worker.postMessage({ n: 40 });
worker.on("message", msg => console.log("Result:", msg));

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

26

What it does: Offloads heavy CPU work off main thread.​
 Use it for: Image processing, big computations.

65) Cluster mode (multi-process web server)
import cluster from "node:cluster";
import os from "node:os";
import http from "node:http";

if (cluster.isPrimary) {
 for (let i = 0; i < os.cpus().length; i++) cluster.fork();
} else {
 http.createServer((_, res) => res.end("ok")).listen(3000);
}

What it does: Spawns workers to use multiple cores.​
 Use it for: Scaling CPU-bound or high traffic servers.

66) Graceful shutdown pattern
const server = app.listen(3000);

process.on("SIGTERM", () => {
 console.log("Shutting down...");
 server.close(() => process.exit(0));
});

What it does: Stops accepting new connections, then exits.​
 Use it for: Clean deploys in containers.

67) Simple healthcheck endpoint

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

27

app.get("/health", (req, res) => res.json({ ok: true, uptime:
process.uptime() }));

What it does: Returns service status.​
 Use it for: Load balancers, uptime monitors.

68) Structured logging (JSON)
function log(level, msg, extra={}) {
 console.log(JSON.stringify({ level, msg, ...extra, ts: new
Date().toISOString() }));
}
log("info", "server_started", { port: 3000 });

What it does: Emits machine-readable logs.​
 Use it for: Cloud logs, better search/filtering.

69) Generate an OpenAPI-ish response shape (simple)
res.json({ data: result, error: null, meta: { requestId } });

What it does: Consistent API response format.​
 Use it for: Cleaner frontend integration.

70) Pagination helper
function paginate(page=1, limit=20) {
 const p = Math.max(1, Number(page));
 const l = Math.min(100, Math.max(1, Number(limit)));
 return { skip: (p-1)*l, take: l };
}

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

28

What it does: Computes skip/take values safely.​
 Use it for: DB queries, list endpoints.

71) Validate/normalize an email
function normalizeEmail(email) {
 return String(email).trim().toLowerCase();
}

What it does: Normalizes user input.​
 Use it for: Logins, deduping.

72) Safe JSON stringify (handles circular refs)
function safeStringify(obj) {
 const seen = new WeakSet();
 return JSON.stringify(obj, (k, v) => {
 if (typeof v === "object" && v) {
 if (seen.has(v)) return "[Circular]";
 seen.add(v);
 }
 return v;
 });
}

What it does: Prevents crashes when logging complex objects.​
 Use it for: Debug logging.

73) Parse a date safely
function parseDate(value) {
 const d = new Date(value);
 return Number.isNaN(d.getTime()) ? null : d;
}

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

29

What it does: Avoids invalid date bugs.​
 Use it for: Filters, scheduling inputs.

74) Simple in-memory job queue
const queue = [];
let running = false;

async function runQueue() {
 if (running) return;
 running = true;
 while (queue.length) await queue.shift()();
 running = false;
}

function enqueue(job) {
 queue.push(job);
 runQueue();
}

What it does: Runs async jobs sequentially.​
 Use it for: Rate-limited processing (simple cases).

75) Limit concurrency for async tasks
async function mapLimit(items, limit, fn) {
 const results = [];
 const executing = new Set();
 for (const item of items) {
 const p = Promise.resolve().then(() => fn(item));
 results.push(p);
 executing.add(p);
 p.finally(() => executing.delete(p));
 if (executing.size >= limit) await Promise.race(executing);

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

30

 }
 return Promise.all(results);
}

What it does: Controls how many promises run at once.​
 Use it for: Batch API calls without overload.

76) Basic file watcher
import fs from "node:fs";

fs.watch("./src", { recursive: true }, (eventType, filename) => {
 console.log(eventType, filename);
});

What it does: Watches changes in a directory.​
 Use it for: Dev tooling, rebuild triggers.

77) Spawn a child process
import { spawn } from "node:child_process";

const p = spawn("node", ["-v"]);
p.stdout.on("data", d => process.stdout.write(d));
p.on("close", code => console.log("exit", code));

What it does: Runs another command and reads output.​
 Use it for: Build pipelines, CLIs.

78) Exec a shell command (careful!)
import { exec } from "node:child_process";

exec("ls -la", (err, stdout, stderr) => {

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

31

 if (err) return console.error(err);
 console.log(stdout);
});

What it does: Runs shell with buffered output.​
 Use it for: Quick scripts (avoid with untrusted input).

79) Serve SSE (Server-Sent Events)
import http from "node:http";

http.createServer((req, res) => {
 if (req.url === "/events") {
 res.writeHead(200, {
 "Content-Type": "text/event-stream",
 "Cache-Control": "no-cache",
 Connection: "keep-alive",
 });
 const t = setInterval(() => {
 res.write(`data: ${JSON.stringify({ time: Date.now() })}\n\n`);
 }, 1000);
 req.on("close", () => clearInterval(t));
 return;
 }
 res.end("ok");
}).listen(3000);

What it does: Pushes updates over HTTP without WebSockets.​
 Use it for: Live feeds, dashboards.

80) Basic cookie parsing (no deps)
function parseCookies(cookieHeader="") {
 return Object.fromEntries(cookieHeader.split(";").map(v =>
v.trim().split("=")).filter(a => a[0]));

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

32

}

What it does: Parses Cookie: header into object.​
 Use it for: Simple session identifiers.

81) Set a cookie header
res.setHeader("Set-Cookie", "session=abc123; HttpOnly; Path=/;
SameSite=Lax");

What it does: Sends a cookie to the browser.​
 Use it for: Sessions (prefer signed/secure cookies).

82) Simple CSRF token idea (concept)
import { randomBytes } from "node:crypto";
const csrf = randomBytes(16).toString("hex");

What it does: Generates token you store + verify.​
 Use it for: Protecting form submissions (when using cookies).

83) Base64 encode/decode
const b64 = Buffer.from("hello", "utf8").toString("base64");
const txt = Buffer.from(b64, "base64").toString("utf8");

What it does: Converts data to/from base64.​
 Use it for: Tokens, safe transport (not encryption).

84) File checksum
import fs from "node:fs";

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

33

import { createHash } from "node:crypto";

function sha256File(file) {
 return new Promise((resolve, reject) => {
 const h = createHash("sha256");
 fs.createReadStream(file)
 .on("data", d => h.update(d))
 .on("error", reject)
 .on("end", () => resolve(h.digest("hex")));
 });
}

What it does: Hashes a file without loading it all.​
 Use it for: Integrity checks.

85) Validate JSON schema quickly (Ajv)
// npm i ajv
import Ajv from "ajv";
const ajv = new Ajv();

const validate = ajv.compile({ type: "object", properties: { id: {
type: "number" } }, required: ["id"] });
console.log(validate({ id: 1 }), validate.errors);

What it does: Validates data against JSON Schema.​
 Use it for: APIs with formal schemas.

86) Create an LRU cache (quick)
class LRU {
 constructor(limit=100) { this.limit=limit; this.map=new Map(); }
 get(k){ if(!this.map.has(k)) return; const v=this.map.get(k);
this.map.delete(k); this.map.set(k,v); return v; }

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

34

 set(k,v){ if(this.map.has(k)) this.map.delete(k); this.map.set(k,v);
if(this.map.size>this.limit)
this.map.delete(this.map.keys().next().value); }
}

What it does: Keeps recent items, evicts oldest.​
 Use it for: Bounded caching.

87) Simple “once” helper
function once(fn) {
 let done = false, val;
 return (...args) => (done ? val : (done=true, val=fn(...args)));
}

What it does: Ensures a function runs only once.​
 Use it for: Init logic, singletons.

88) Validate required env vars
function requireEnv(name) {
 const v = process.env[name];
 if (!v) throw new Error(`Missing env var: ${name}`);
 return v;
}

What it does: Fails fast on missing config.​
 Use it for: Production safety.

89) Simple config object with types
const config = {
 port: Number(process.env.PORT ?? 3000),
 debug: process.env.DEBUG === "true",

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

35

};

What it does: Normalizes config values.​
 Use it for: Avoiding “stringly typed” bugs.

90) Basic request ID middleware (Express)
import { randomUUID } from "node:crypto";

app.use((req, res, next) => {
 req.id = randomUUID();
 res.setHeader("X-Request-Id", req.id);
 next();
});

What it does: Adds trace ID per request.​
 Use it for: Debugging logs across services.

91) Input sanitization (basic)
function stripControlChars(s) {
 return String(s).replace(/[\x00-\x1F\x7F]/g, "");
}

What it does: Removes control characters.​
 Use it for: Logging safety, basic cleanup (not full security).

92) Validate a URL safely
function isValidUrl(value) {
 try { new URL(value); return true; } catch { return false; }
}

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

36

What it does: Checks if a string is a valid URL format.​
 Use it for: Input validation.

93) Basic file download with fetch + stream to disk
import fs from "node:fs";
import { pipeline } from "node:stream/promises";

const res = await fetch("https://example.com/file.zip");
await pipeline(res.body, fs.createWriteStream("file.zip"));

What it does: Streams HTTP response to a file.​
 Use it for: Download tools, installers.

94) Parse a JSON Lines (NDJSON) file
import fs from "node:fs";
import readline from "node:readline";

const rl = readline.createInterface({ input:
fs.createReadStream("data.ndjson") });
for await (const line of rl) {
 const obj = JSON.parse(line);
 // process obj
}

What it does: Reads line-by-line JSON objects.​
 Use it for: Large logs, data exports.

95) Simple metrics counter
const metrics = { requests: 0 };

app.use((req, res, next) => {

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

37

 metrics.requests++;
 next();
});

app.get("/metrics", (req, res) => res.json(metrics));

What it does: Tracks simple runtime metrics.​
 Use it for: Debugging traffic patterns.

96) Memory leak guard: max listeners
import { EventEmitter } from "node:events";
EventEmitter.defaultMaxListeners = 50;

What it does: Raises listener warning threshold (or set lower to catch leaks).​
 Use it for: Avoid “MaxListenersExceededWarning” surprises.

97) ESM __dirname equivalent
import { fileURLToPath } from "node:url";
import path from "node:path";

const __filename = fileURLToPath(import.meta.url);
const __dirname = path.dirname(__filename);

What it does: Recreates __dirname in ES modules.​
 Use it for: Relative file reads in modern Node.

98) Simple HTML escaping for output safety
function escapeHtml(s="") {
 return s.replace(/[&<>"']/g, c => ({
"&":"&","<":"<",">":">",'"':""","'":"'" }[c]));
}

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

38

What it does: Prevents HTML injection in rendered strings.​
 Use it for: Server-side templates, logs shown in HTML.

99) Validate port + start server safely
function normalizePort(v) {
 const p = Number(v);
 return Number.isInteger(p) && p > 0 && p < 65536 ? p : 3000;
}

What it does: Prevents invalid port values.​
 Use it for: Robust server startup.

100) One-file “API + static” server combo
import express from "express";

const app = express();
app.use(express.json());
app.use(express.static("public"));

app.get("/api/time", (req, res) => res.json({ time: new
Date().toISOString() }));
app.listen(3000, () => console.log("http://localhost:3000"));

What it does: Serves frontend + API from one Node app.​
 Use it for: Small apps, demos, internal tools.

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

	100 Node.js Coding Snippets
	1) Basic “Hello World” HTTP server
	2) Minimal server with routing (no frameworks)
	3) Read JSON body from a request
	4) Parse query string parameters
	5) Serve a static file
	6) Return JSON response
	7) Environment variables + fallback defaults
	8) Simple logger middleware pattern (framework-free)
	9) Handle uncaught errors safely
	10) Read a text file (async/await)
	11) Write a file (atomic-ish pattern)
	12) Append to a log file
	13) List files in a directory
	14) Ensure a directory exists
	15) Join paths safely across OSes
	16) Read a JSON file safely
	17) Create a simple CLI argument parser
	18) Prompt the user in terminal
	19) Exit with a specific error code
	20) Measure performance timing
	21) Create an EventEmitter
	22) Debounce a function (useful for events)
	23) Throttle a function
	24) Basic cron-like interval job
	25) Promise timeout wrapper
	26) Retry wrapper with backoff
	27) Make an HTTP GET request (built-in fetch)
	28) JSON fetch helper
	29) POST JSON with fetch
	30) URL building safely
	31) Basic TCP server
	32) Create a WebSocket server (requires ws)
	33) Hash a password (requires bcrypt)
	34) Create a JWT (requires jsonwebtoken)
	35) Verify a JWT
	36) Simple Express server
	37) Express JSON body parsing
	38) Express error handler
	39) Serve static files in Express
	40) CORS in Express (requires cors)
	41) Rate limiting (requires express-rate-limit)
	42) Validate input with Zod
	43) Read config from .env (dotenv)
	44) Connect to MongoDB (mongodb driver)
	45) Postgres query (pg)
	46) SQLite quick DB (better-sqlite3)
	47) Create a simple in-memory cache
	48) TTL cache (expires entries)
	49) Stream a large file download
	50) Compress response with gzip (built-in)
	51) Create a readable stream from text
	52) Pipeline streams with error handling
	53) CSV parsing (csv-parse)
	54) Generate UUIDs (built-in)
	55) Hash content with SHA-256
	56) Encrypt/decrypt (AES-GCM) (concept demo)
	57) Generate a secure random token
	58) Validate password strength (simple)
	59) Simple file upload server (raw multipart is hard—use multer)
	60) Basic unit test with node:test
	61) Mock timers quickly (simple approach)
	62) Read process memory usage
	63) Read CPU info
	64) Worker threads (CPU-heavy tasks)
	65) Cluster mode (multi-process web server)
	66) Graceful shutdown pattern
	67) Simple healthcheck endpoint
	68) Structured logging (JSON)
	69) Generate an OpenAPI-ish response shape (simple)
	70) Pagination helper
	71) Validate/normalize an email
	72) Safe JSON stringify (handles circular refs)
	73) Parse a date safely
	74) Simple in-memory job queue
	75) Limit concurrency for async tasks
	76) Basic file watcher
	77) Spawn a child process
	78) Exec a shell command (careful!)
	79) Serve SSE (Server-Sent Events)
	80) Basic cookie parsing (no deps)
	81) Set a cookie header
	82) Simple CSRF token idea (concept)
	83) Base64 encode/decode
	84) File checksum
	85) Validate JSON schema quickly (Ajv)
	86) Create an LRU cache (quick)
	87) Simple “once” helper
	88) Validate required env vars
	89) Simple config object with types
	90) Basic request ID middleware (Express)
	91) Input sanitization (basic)
	92) Validate a URL safely
	93) Basic file download with fetch + stream to disk
	94) Parse a JSON Lines (NDJSON) file
	95) Simple metrics counter
	96) Memory leak guard: max listeners
	97) ESM __dirname equivalent
	98) Simple HTML escaping for output safety
	99) Validate port + start server safely
	100) One-file “API + static” server combo

