GOOGLE APPS SCRIPT CODING
EXERCISES & CODE SNIPPETS

50 PRACTICAL EXAMPLES
A Comprehensive Guide for Developers

1) Custom menu in Google Sheets

Does: Adds a menu item so users can click to run functions.
How it works: onOpen () runs automatically when the file opens (for editors), and
SpreadsheetApp.getUi() adds Ul.

function onOpen() {
SpreadsheetApp.getUi()
.createMenu(' Tools")
.addItem('Say Hello', 'sayHello')
.addToUi();

}

function sayHello() {
SpreadsheetApp.getUi().alert('Hello from Apps Script!');
}

2) Show a toast message

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

Does: Shows a small notification in Sheets.
How it works: toast () displays messages without interrupting users.

function showToast() {

SpreadsheetApp.getActive().toast('Processing complete [%4', 'Status',
5);
}

3) Read active cell value

Does: Gets the current selected cell value.
How it works: getActiveCell() returns the cell object, getValue() returns its value.

function readActiveCell() {
const cell = SpreadsheetApp.getActiveRange();
Logger.log('Value: ' + cell.getValue());

4) Write value to a cell

Does: Writes text to A1 on the active sheet.
How it works: getRange("A1").setValue(.. .) updates the cell.

function writeToA1() {
const sheet = SpreadsheetApp.getActiveSheet();
sheet.getRange('A1').setValue('Updated at ' + new Date());

5) Append a row to a sheet

Does: Adds a row at the bottom with timestamp + user.
How it works: appendRow() auto-finds the next row.

function appendLogRow() {

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

const ss = SpreadsheetApp.getActive();

const sheet = ss.getSheetByName('Log') || ss.insertSheet('Log');

sheet.appendRow([new Date(), Session.getActiveUser().getEmail(),
'Ran appendLogRow']);

}

6) Read a whole range into a 2D array

Does: Reads values from A1:D10.
How it works: getValues() returns a 2D array.

function readRangeArray() {
const sheet = SpreadsheetApp.getActiveSheet();
const data = sheet.getRange('A1:D10').getValues();
Logger.log(JSON.stringify(data));

}

7) Write a 2D array into a range

Does: Writes a mini table starting at A1.
How it works: setValues() writes all cells at once (faster than loops).

function writeArrayTable() {
const sheet = SpreadsheetApp.getActiveSheet();
const values = |

['Name', 'Score'],
["Ava', 92],
['Noah', 87]

1;
sheet.getRange(1, 1, values.length,
values[0].length).setValues(values);

}

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

8) Clear a range (values + formats)

Does: Clears A1:D20 completely.
How it works: clear () removes content and formatting.

function clearBlock() {
SpreadsheetApp.getActiveSheet().getRange('A1:D20"').clear();
}

9) Clear only contents (keep formatting)

Does: Removes values but keeps styles.
How it works: clearContent () doesn’'t touch formats.

function clearOnlyContent() {
SpreadsheetApp.getActiveSheet().getRange('A1:D20').clearContent();
}

10) Freeze header row

Does: Freezes first row.
How it works: Freeze helps keep headers visible while scrolling.

function freezeHeader() {
SpreadsheetApp.getActiveSheet().setFrozenRows(1);
}

11) Auto-resize columns

Does: Resizes columns A-D to fit content.
How it works: autoResizeColumns(start, num).

function autoResizeCols() {
const sheet = SpreadsheetApp.getActiveSheet();

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

sheet.autoResizeColumns(1, 4); // A=1, 4 columns => A:D

12) Add a filter to header row

Does: Creates a filter over A1:D.
How it works: Filters allow sorting/filtering in Ul.

function addFilter() {
const sheet = SpreadsheetApp.getActiveSheet();
const lastRow = sheet.getLastRow();
if (lastRow < 2) return;
const range = sheet.getRange(1, 1, lastRow, 4);
if (!range.getFilter()) range.createFilter();

13) Sort by a column

Does: Sorts data range A2:D by column B ascending.
How it works: sort(colIndex) sorts by that column.

function sortByColumnB() {
const sheet = SpreadsheetApp.getActiveSheet();
const lastRow = sheet.getLastRow();
if (lastRow < 3) return;
sheet.getRange(2, 1, lastRow - 1, 4).sort(2); // column B is 2

14) Find duplicates and highlight them

Does: Highlights duplicates in column A (red).
How it works: Uses a Set to track seen values.

function highlightDuplicatesInColA() {

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

const sheet = SpreadsheetApp.getActiveSheet();
sheet.getRange('A1:A' + sheet.getLastRow());
const values = range.getValues().flat();

const seen = new Set();

const range

const backgrounds = values.map(v => {
const key = String(v).trim();
if ('key) return ['white'];
if (seen.has(key)) return ['#ffcccc'];
seen.add(key) ;
return ['white'];

1)

range.setBackgrounds(backgrounds) ;

15) Data validation dropdown

Does: Creates dropdown options in B2:B20.
How it works: DataValidationBuilder builds rules.

function addDropdownValidation() {
const sheet = SpreadsheetApp.getActiveSheet();
const rule = SpreadsheetApp.newDataValidation()
.requireValuelInList(['Low', 'Medium', 'High'], true)
.setAllowInvalid(false)
.build();

sheet.getRange('B2:B20"').setDataValidation(rule);
}

16) Conditional formatting (greater than)

Does: Colors values > 90 in green in column B.
How it works: Adds a conditional format rule.

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

function conditionalFormatScores() {
SpreadsheetApp.getActiveSheet();
sheet.getRange('B2:B');
sheet.getConditionalFormatRules();

const sheet
const range
const rules

const rule = SpreadsheetApp.newConditionalFormatRule()
.whenNumberGreaterThan(90)
.setRanges([range])
.setBackground('#ccffcc')
.build();

sheet.setConditionalFormatRules([...rules, rule]);

17) Protect a range (warning only)

Does: Warns users when editing A1:D1.
How it works: setWarningOnly(true) shows a warning instead of blocking.

function protectHeaderWarning() {
const sheet = SpreadsheetApp.getActiveSheet();
const protection = sheet.getRange('A1:D1').protect();
protection.setWarningOnly(true);

18) Create a new sheet (if missing)

Does: Ensures a sheet named “Data” exists.
How it works: Checks by name, creates if not found.

function ensureSheetData() {
const ss = SpreadsheetApp.getActive();
const name = 'Data’;
const sheet = ss.getSheetByName(name) || ss.insertSheet(name);
sheet.activate();

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

19) Duplicate a sheet

Does: Copies active sheet and renames it.
How it works: copyTo() duplicates into same spreadsheet.

function duplicateActiveSheet()

const ss = SpreadsheetApp.getActive();

const sheet = ss.getActiveSheet();

const copy = sheet.copyTo(ss);

copy.setName(sheet.getName() + ' Copy ' + Utilities.formatDate(new
Date(), ss.getSpreadsheetTimeZone(), 'yyyyMMdd_HHmm'));
}

20) Export a sheet as PDF and email it

Does: Generates a PDF of the spreadsheet and emails it.
How it works: Builds an export URL + uses OAuth token to fetch the blob.

function emailSpreadsheetAsPdf() {

const ss = SpreadsheetApp.getActive();

const fileId = ss.getId();

const url =
“https://docs.google.com/spreadsheets/d/${fileld}/export?format=pdf&po
rtrait=true&fitw=true’;

const token = ScriptApp.getOAuthToken();

const response = UrlFetchApp.fetch(url, { headers: { Authorization:
'Bearer ' + token } });

const pdfBlob = response.getBlob().setName(ss.getName() + '.pdf');

const recipient = Session.getActiveUser().getEmail();
GmailApp.sendEmail(recipient, 'PDF Export: ' + ss.getName(),
'Attached is the PDF export.', { attachments: [pdfBlob] });
}

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

21) Create a Google Doc and write content

Does: Makes a new Doc and inserts text.
How it works: DocumentApp.create() returns a Doc; body holds paragraphs.

function createDocWithText() {
const doc = DocumentApp.create('Auto Doc ' + new Date());
doc.getBody() .appendParagraph('Hello! This document was created by
Apps Script.');
Logger.log('Doc URL: ' + doc.getUrl());
}

22) Find and replace in a Google Doc

Does: Replaces “foo” with “bar” in the active doc.
How it works: replaceText(pattern, replacement) uses regex-like patterns.

function replaceInDoc() {
const doc = DocumentApp.getActiveDocument();
const body = doc.getBody();
body.replaceText('foo', 'bar');

}

23) Add a table to a Google Doc

Does: Inserts a simple 3x2 table.
How it works: appendTable() with a 2D array.

function addTableToDoc() {
const doc = DocumentApp.getActiveDocument();
const body = doc.getBody();
body .appendTable([
['Item', 'Qty'],
['Pencils', '10'],

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

['Notebooks', '5']

1)

10

24) Create a Docs sidebar

Does: Opens a sidebar Ul in Google Docs.
How it works: HTMLService returns Ul HTML.

function onOpen() {
DocumentApp.getUi()
.createMenu('Doc Tools')
.addItem('Open Sidebar', 'openSidebar')
.addToUi();

function openSidebar() {
const html = HtmlService.createHtmlOutput('<div
style="font-family:Arial;padding:12px">Hi from Sidebar!</div>")
.setTitle('My Sidebar');
DocumentApp.getUi().showSidebar (html);

25) Insert current date at cursor in Google Docs

Does: Inserts date where the cursor is.
How it works: Uses getCursor () and inserts into the element.

function insertDateAtCursor() {

const doc = DocumentApp.getActiveDocument();

const cursor = doc.getCursor();

if (!'cursor) throw new Error('Place the cursor in the document
first.');

cursor.insertText(Utilities.formatDate(new Date(),
Session.getScriptTimeZone(), 'yyyy-MM-dd'));

}

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

11

26) Create a Google Form with questions

Does: Creates a form with a short answer + multiple choice.
How it works: FormApp.create() then addTextItem(), addMultipleChoiceItem().

function createSampleForm() {
const form = FormApp.create('Feedback ' + new Date());
form.addTextItem().setTitle('Your name').setRequired(true);
form.addMultipleChoiceItem()
.setTitle('Rate the session')
.setChoiceVvalues(['1', '2"', '3', '4', '5'])
.setRequired(true);

Logger.log('Form URL: ' + form.getEditUrl());

27) Read latest form responses

Does: Logs the latest response values.
How it works: getResponses() returns response objects.

function loglLatestFormResponse() {
const form = FormApp.getActiveForm();
const responses = form.getResponses();
if (!responses.length) return;

const latest = responses|[responses.length - 1];
const items = latest.getItemResponses().map(r => ({
title: r.getItem().getTitle(),
answer: r.getResponse()

1))

Logger.log(JSON.stringify(items, null, 2));

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

12

28) Send an email (simple)

Does: Emails yourself a test message.
How it works: GmailApp.sendEmail(to, subject, body).

function sendTestEmail() {
const to = Session.getActiveUser().getEmail();
GmailApp.sendEmail(to, 'Apps Script Test', 'Hello from Apps Script
at ' + new Date());

}

29) Search Gmail and list subject lines

Does: Finds last 5 emails matching a query.
How it works: GmailApp.search() uses Gmail search operators.

function searchGmailSubjects() {
const threads = GmailApp.search('newer_than:7d', @, 5);
threads.forEach(t => {
const msg = t.getMessages()[0];
Logger.log(msg.getDate() + ' - ' + msg.getSubject());
1)

30) Create a Calendar event

Does: Adds a 30-minute event to your primary calendar.
How it works: CalendarApp creates events with start/end dates.

function createCalendarEvent() {
const cal = CalendarApp.getDefaultCalendar();
const start = new Date();
const end = new Date(start.getTime() + 30 * 60 * 1000);

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

13

cal.createEvent('Quick Meeting', start, end, { description: 'Created

by Apps Script' });
}

31) List upcoming Calendar events

Does: Logs next 10 events for the next 7 days.
How it works: getEvents(start, end) returns event objects.

function listUpcomingEvents() {
const cal = CalendarApp.getDefaultCalendar();
const start = new Date();

const end = new Date(start.getTime() + 7 * 24 * 60 * 60 * 1000);

const events = cal.getEvents(start, end).slice(0, 10);

events.forEach(e => Logger.log(e.getStartTime() + ' | ' +
e.getTitle()));

32) Create a Drive folder

Does: Makes a folder in your Drive.
How it works: DriveApp creates folders, returns a Folder object.

function createDriveFolder() {

const folder = DriveApp.createFolder('My Folder ' + new
Date().toISOString());

Logger.log(folder.getUrl());

33) List files in a folder by ID

Does: Lists file names from a specific folder.
How it works: Uses getFiles() iterator.

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

function listFilesInFolder() {
const folderId = 'PASTE_FOLDER_ID_HERE';
const folder = DriveApp.getFolderById(folderId);
const files = folder.getFiles();

while (files.hasNext()) {
const f = files.next();
Logger.log(f.getName() + ' "+ f.getUrl());

}

14

34) Copy a file

Does: Copies a Drive file and renames it.
How it works: makeCopy (newName) duplicates.

function copyDriveFile() {
const fileId = 'PASTE_FILE_ID_HERE';
const file = DriveApp.getFileById(fileId);
const copy = file.makeCopy(file.getName() + ' (Copy)');
Logger.log(copy.getUrl());
}

35) Convert a Google Doc to PDF in Drive

Does: Creates a PDF file version in Drive.
How it works: getAs(MimeType.PDF) returns a blob you can save.

function saveDocAsPdf()
const docId = 'PASTE_DOC_ID_HERE';
const file = DriveApp.getFileById(docId);
const pdfBlob = file.getAs(MimeType.PDF).setName(file.getName() +
Lopdf');
const pdfFile = DriveApp.createFile(pdfBlob);
Logger.log(pdfFile.getUrl());

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

15

36) Fetch JSON from a public API

Does: Calls an API and parses JSON.
How it works: UrlFetch gets text; JSON.parse() makes an object.

function fetchJsonExample() {
const url = 'https://api.github.com/';
const res = UrlFetchApp.fetch(url, { muteHttpExceptions: true });
const data = JSON.parse(res.getContentText());
Logger.log(data);

37) POST JSON to a webhook

Does: Sends JSON payload to a webhook URL.
How it works: Ur1FetchApp.fetch() with method + JSON body.

function postJsonWebhook() {
const webhookUrl = 'PASTE_WEBHOOK_URL_HERE';
const payload = { event: 'test', time: new Date().toISOString() };

const res = UrlFetchApp.fetch(webhookUrl, ¢
method: 'post',
contentType: 'application/json',
payload: JSON.stringify(payload),
muteHttpExceptions: true

1)

Logger.log(res.getResponseCode() + + res.getContentText());

38) Generate a UUID

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

16

Does: Creates a unique ID for records.
How it works: Utilities.getUuid() generates a random UUID.

function makeUuid() A
Logger.log(Utilities.getUuid());

39) Format dates consistently

Does: Logs a date formatted for spreadsheets.
How it works: Uses timezone-aware formatting.

function formatDateExample() {
const tz = Session.getScriptTimeZone();
Logger.log(Utilities.formatDate(new Date(), tz, 'yyyy-MM-dd
HH:mm:ss'));

}

40) Create an installable time trigger

Does: Runs dailyJob() every day at ~9am.
How it works: Installable triggers run under your account.

function createDailyTrigger() {
ScriptApp.newTrigger('dailyJob")
.timeBased()
.everyDays(1)
.atHour (9)
.create();

function dailyJob() {
Logger.log('Daily job ran at ' + new Date());

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

41) Remove all triggers for this project

Does: Cleans up triggers (useful while testing).
How it works: Lists triggers then deletes them.

function deleteAllTriggers() {
ScriptApp.getProjectTriggers().forEach(t =>

ScriptApp.deleteTrigger(t));

}

17

42) Simple web app (GET)

Does: Returns a plain text response from a deployed web app.
How it works: doGet (e) is the entrypoint for GET requests.

function doGet(e)
return ContentService
.createTextOutput('Hello from Apps Script web app! Time:
Date())
.setMimeType(ContentService.MimeType.TEXT);

+ new

43) Web app returning JSON

Does: Returns JSON data for frontend use.
How it works: setMimeType (JSON) makes it API-like.

function doGet(e)
const obj = { ok: true, now: new Date().toISOString() };
return ContentService
.createTextOutput(JSON.stringify(obj))
.setMimeType(ContentService.MimeType.JSON) ;

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

44) HTML web app page

Does: Serves an HTML page.
How it works: HtmlService.createHtmlOutput() returns HTML.

function doGet() {
const html = °
<html>
<body style="font-family:Arial;padding:20px">
<h2>Apps Script Web App</h2>
<p>Loaded at ${new Date().toISOString()}</p>
</body>
</html>
return HtmlService.createHtmlOutput(html).setTitle('Web App');
}

18

45) Use PropertiesService (store settings)

Does: Saves and reads a key/value setting.
How it works: Script properties persist across runs.

function saveSetting() {
PropertiesService.getScriptProperties().setProperty('API_KEY',

"demo-key');

}

function readSetting() {
const key =
PropertiesService.getScriptProperties().getProperty('API_KEY');
Logger.log('API_KEY: ' + key);

}

46) Locking to prevent race conditions

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

Does: Prevents two runs from writing at once.
How it works: LockService provides mutex-style locks.

function safeAppendWithLock() {
const lock = LockService.getScriptLock();
lock.waitlLock(20000) ;

try {
const sheet = SpreadsheetApp.getActiveSheet();
sheet.appendRow([new Date(), 'Safe write']);

} finally {
lock.releaselLock();

19

47) Create a custom function for Sheets

Does: =DOUBLE (A1) returns A1*2.

How it works: Custom functions return values and can be used in cells.

/**

* Doubles a number.

* @param {number} n input number

* @return {number} doubled

*/

function DOUBLE(n) {
*

return Number(n) 2;

48) Custom function: flatten + unique

Does: =UNIQUE_FLAT(A1:C10) returns unique values from a range.
How it works: Takes 2D array input, flattens, filters.

/**

* Returns unique non-empty values from a range.

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

20

* @param {any[][]} range input range

* @return {any[]} unique values

*/

function UNIQUE_FLAT(range) {
const flat = range.flat().map(v => String(v).trim()).filter(v => v);
return [...new Set(flat)];

49) Add comments to cells

Does: Adds a comment to A1.
How it works: Comments help provide context for collaborators.

function addCellComment() A
const sheet = SpreadsheetApp.getActiveSheet();
sheet.getRange('A1').setComment('This cell was updated by Apps
Script.');
}

50) Read / write named ranges

Does: Sets a named range and reads it later.
How it works: Named ranges are stable references even if layout changes.

function setAndUseNamedRange() {
const ss = SpreadsheetApp.getActive();
const sheet = ss.getActiveSheet();

const range = sheet.getRange('C2:C5');
ss.setNamedRange('MyRange', range);

const named = ss.getRangeByName('MyRange');
named.setValue('Named range write [%4');

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

	
	1) Custom menu in Google Sheets
	2) Show a toast message
	3) Read active cell value
	4) Write value to a cell
	5) Append a row to a sheet
	6) Read a whole range into a 2D array
	7) Write a 2D array into a range
	8) Clear a range (values + formats)
	9) Clear only contents (keep formatting)
	10) Freeze header row
	11) Auto-resize columns
	12) Add a filter to header row
	13) Sort by a column
	14) Find duplicates and highlight them
	15) Data validation dropdown
	16) Conditional formatting (greater than)
	17) Protect a range (warning only)
	18) Create a new sheet (if missing)
	19) Duplicate a sheet
	20) Export a sheet as PDF and email it
	21) Create a Google Doc and write content
	22) Find and replace in a Google Doc
	23) Add a table to a Google Doc
	24) Create a Docs sidebar
	25) Insert current date at cursor in Google Docs
	26) Create a Google Form with questions
	27) Read latest form responses
	28) Send an email (simple)
	29) Search Gmail and list subject lines
	30) Create a Calendar event
	31) List upcoming Calendar events
	32) Create a Drive folder
	33) List files in a folder by ID
	34) Copy a file
	35) Convert a Google Doc to PDF in Drive
	36) Fetch JSON from a public API
	37) POST JSON to a webhook
	38) Generate a UUID
	39) Format dates consistently
	40) Create an installable time trigger
	41) Remove all triggers for this project
	42) Simple web app (GET)
	43) Web app returning JSON
	44) HTML web app page
	45) Use PropertiesService (store settings)
	46) Locking to prevent race conditions
	47) Create a custom function for Sheets
	48) Custom function: flatten + unique
	49) Add comments to cells
	50) Read / write named ranges

