GOOGLE APPS SCRIPT CODING
EXERCISES & CODE SNIPPETS

50 PRACTICAL EXAMPLES
A Comprehensive Guide for Developers

1) Custom menu in Google Sheets

Does: Adds a menu item so users can click to run functions.
How it works: onOpen () runs automatically when the file opens (for editors), and
SpreadsheetApp.getUi() adds Ul.

function onOpen() {
SpreadsheetApp.getUi()
.createMenu( ' Tools")
.addItem('Say Hello', 'sayHello')
.addToUi();

}

function sayHello() {
SpreadsheetApp.getUi().alert('Hello from Apps Script!');
}

2) Show a toast message
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Does: Shows a small notification in Sheets.
How it works: toast () displays messages without interrupting users.

function showToast() {

SpreadsheetApp.getActive().toast('Processing complete [%4', 'Status',
5);
}

3) Read active cell value

Does: Gets the current selected cell value.
How it works: getActiveCell() returns the cell object, getValue() returns its value.

function readActiveCell() {
const cell = SpreadsheetApp.getActiveRange();
Logger.log('Value: ' + cell.getValue());

4) Write value to a cell

Does: Writes text to A1 on the active sheet.
How it works: getRange("A1").setValue( .. .) updates the cell.

function writeToA1() {
const sheet = SpreadsheetApp.getActiveSheet();
sheet.getRange('A1').setValue('Updated at ' + new Date());

5) Append a row to a sheet

Does: Adds a row at the bottom with timestamp + user.
How it works: appendRow( ) auto-finds the next row.

function appendLogRow() {
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const ss = SpreadsheetApp.getActive();

const sheet = ss.getSheetByName('Log') || ss.insertSheet('Log');

sheet.appendRow([new Date(), Session.getActiveUser().getEmail(),
'Ran appendLogRow']);

}

6) Read a whole range into a 2D array

Does: Reads values from A1:D10.
How it works: getValues( ) returns a 2D array.

function readRangeArray() {
const sheet = SpreadsheetApp.getActiveSheet();
const data = sheet.getRange('A1:D10').getValues();
Logger.log(JSON.stringify(data));

}

7) Write a 2D array into a range

Does: Writes a mini table starting at A1.
How it works: setValues( ) writes all cells at once (faster than loops).

function writeArrayTable() {
const sheet = SpreadsheetApp.getActiveSheet();
const values = |

[ 'Name', 'Score'],
["Ava', 92],
[ 'Noah', 87]

1;
sheet.getRange(1, 1, values.length,
values[0].length).setValues(values);

}
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8) Clear a range (values + formats)

Does: Clears A1:D20 completely.
How it works: clear () removes content and formatting.

function clearBlock() {
SpreadsheetApp.getActiveSheet().getRange('A1:D20"').clear();
}

9) Clear only contents (keep formatting)

Does: Removes values but keeps styles.
How it works: clearContent () doesn’'t touch formats.

function clearOnlyContent() {
SpreadsheetApp.getActiveSheet().getRange('A1:D20').clearContent();
}

10) Freeze header row

Does: Freezes first row.
How it works: Freeze helps keep headers visible while scrolling.

function freezeHeader() {
SpreadsheetApp.getActiveSheet().setFrozenRows(1);
}

11) Auto-resize columns

Does: Resizes columns A-D to fit content.
How it works: autoResizeColumns(start, num).

function autoResizeCols() {
const sheet = SpreadsheetApp.getActiveSheet();
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sheet.autoResizeColumns(1, 4); // A=1, 4 columns => A:D

12) Add a filter to header row

Does: Creates a filter over A1:D.
How it works: Filters allow sorting/filtering in Ul.

function addFilter() {
const sheet = SpreadsheetApp.getActiveSheet();
const lastRow = sheet.getLastRow();
if (lastRow < 2) return;
const range = sheet.getRange(1, 1, lastRow, 4);
if (!range.getFilter()) range.createFilter();

13) Sort by a column

Does: Sorts data range A2:D by column B ascending.
How it works: sort(colIndex) sorts by that column.

function sortByColumnB() {
const sheet = SpreadsheetApp.getActiveSheet();
const lastRow = sheet.getLastRow();
if (lastRow < 3) return;
sheet.getRange(2, 1, lastRow - 1, 4).sort(2); // column B is 2

14) Find duplicates and highlight them

Does: Highlights duplicates in column A (red).
How it works: Uses a Set to track seen values.

function highlightDuplicatesInColA() {
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const sheet = SpreadsheetApp.getActiveSheet();
sheet.getRange('A1:A' + sheet.getLastRow());
const values = range.getValues().flat();

const seen = new Set();

const range

const backgrounds = values.map(v => {
const key = String(v).trim();
if ('key) return ['white'];
if (seen.has(key)) return ['#ffcccc'];
seen.add(key) ;
return ['white'];

1)

range.setBackgrounds(backgrounds) ;

15) Data validation dropdown

Does: Creates dropdown options in B2:B20.
How it works: DataValidationBuilder builds rules.

function addDropdownValidation() {
const sheet = SpreadsheetApp.getActiveSheet();
const rule = SpreadsheetApp.newDataValidation()
.requireValuelInList(['Low', 'Medium', 'High'], true)
.setAllowInvalid(false)
.build();

sheet.getRange('B2:B20"').setDataValidation(rule);
}

16) Conditional formatting (greater than)

Does: Colors values > 90 in green in column B.
How it works: Adds a conditional format rule.
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function conditionalFormatScores() {
SpreadsheetApp.getActiveSheet();
sheet.getRange('B2:B');
sheet.getConditionalFormatRules();

const sheet
const range
const rules

const rule = SpreadsheetApp.newConditionalFormatRule()
.whenNumberGreaterThan(90)
.setRanges([range])
.setBackground('#ccffcc')
.build();

sheet.setConditionalFormatRules([...rules, rule]);

17) Protect a range (warning only)

Does: Warns users when editing A1:D1.
How it works: setWarningOnly(true) shows a warning instead of blocking.

function protectHeaderWarning() {
const sheet = SpreadsheetApp.getActiveSheet();
const protection = sheet.getRange('A1:D1').protect();
protection.setWarningOnly(true);

18) Create a new sheet (if missing)

Does: Ensures a sheet named “Data” exists.
How it works: Checks by name, creates if not found.

function ensureSheetData() {
const ss = SpreadsheetApp.getActive();
const name = 'Data’;
const sheet = ss.getSheetByName(name) || ss.insertSheet(name);
sheet.activate();
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19) Duplicate a sheet

Does: Copies active sheet and renames it.
How it works: copyTo( ) duplicates into same spreadsheet.

function duplicateActiveSheet()

const ss = SpreadsheetApp.getActive();

const sheet = ss.getActiveSheet();

const copy = sheet.copyTo(ss);

copy.setName(sheet.getName() + ' Copy ' + Utilities.formatDate(new
Date(), ss.getSpreadsheetTimeZone(), 'yyyyMMdd_HHmm'));
}

20) Export a sheet as PDF and email it

Does: Generates a PDF of the spreadsheet and emails it.
How it works: Builds an export URL + uses OAuth token to fetch the blob.

function emailSpreadsheetAsPdf() {

const ss = SpreadsheetApp.getActive();

const fileId = ss.getId();

const url =
“https://docs.google.com/spreadsheets/d/${fileld}/export?format=pdf&po
rtrait=true&fitw=true’;

const token = ScriptApp.getOAuthToken();

const response = UrlFetchApp.fetch(url, { headers: { Authorization:
'Bearer ' + token } });

const pdfBlob = response.getBlob().setName(ss.getName() + '.pdf');

const recipient = Session.getActiveUser().getEmail();
GmailApp.sendEmail(recipient, 'PDF Export: ' + ss.getName(),
'Attached is the PDF export.', { attachments: [pdfBlob] });
}
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21) Create a Google Doc and write content

Does: Makes a new Doc and inserts text.
How it works: DocumentApp.create() returns a Doc; body holds paragraphs.

function createDocWithText() {
const doc = DocumentApp.create('Auto Doc ' + new Date());
doc.getBody() .appendParagraph('Hello! This document was created by
Apps Script.');
Logger.log('Doc URL: ' + doc.getUrl());
}

22) Find and replace in a Google Doc

Does: Replaces “foo” with “bar” in the active doc.
How it works: replaceText(pattern, replacement) uses regex-like patterns.

function replaceInDoc() {
const doc = DocumentApp.getActiveDocument();
const body = doc.getBody();
body.replaceText('foo', 'bar');

}

23) Add a table to a Google Doc

Does: Inserts a simple 3x2 table.
How it works: appendTable() with a 2D array.

function addTableToDoc() {
const doc = DocumentApp.getActiveDocument();
const body = doc.getBody();
body .appendTable([
['Item', 'Qty'],
['Pencils', '10'],
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[ 'Notebooks', '5']

1)
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24) Create a Docs sidebar

Does: Opens a sidebar Ul in Google Docs.
How it works: HTMLService returns Ul HTML.

function onOpen() {
DocumentApp.getUi()
.createMenu( 'Doc Tools')
.addItem('Open Sidebar', 'openSidebar')
.addToUi();

function openSidebar() {
const html = HtmlService.createHtmlOutput('<div
style="font-family:Arial;padding:12px">Hi from Sidebar!</div>")
.setTitle('My Sidebar');
DocumentApp.getUi().showSidebar (html);

25) Insert current date at cursor in Google Docs

Does: Inserts date where the cursor is.
How it works: Uses getCursor () and inserts into the element.

function insertDateAtCursor() {

const doc = DocumentApp.getActiveDocument();

const cursor = doc.getCursor();

if (!'cursor) throw new Error('Place the cursor in the document
first.');

cursor.insertText(Utilities.formatDate(new Date(),
Session.getScriptTimeZone(), 'yyyy-MM-dd'));

}
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26) Create a Google Form with questions

Does: Creates a form with a short answer + multiple choice.
How it works: FormApp.create() then addTextItem(), addMultipleChoiceItem().

function createSampleForm() {
const form = FormApp.create('Feedback ' + new Date());
form.addTextItem().setTitle( 'Your name').setRequired(true);
form.addMultipleChoiceItem()
.setTitle('Rate the session')
.setChoiceVvalues(['1', '2"', '3', '4', '5'])
.setRequired(true);

Logger.log('Form URL: ' + form.getEditUrl());

27) Read latest form responses

Does: Logs the latest response values.
How it works: getResponses( ) returns response objects.

function loglLatestFormResponse() {
const form = FormApp.getActiveForm();
const responses = form.getResponses();
if (!responses.length) return;

const latest = responses|[responses.length - 1];
const items = latest.getItemResponses().map(r => ({
title: r.getItem().getTitle(),
answer: r.getResponse()

1))

Logger.log(JSON.stringify(items, null, 2));
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28) Send an email (simple)

Does: Emails yourself a test message.
How it works: GmailApp.sendEmail(to, subject, body).

function sendTestEmail() {
const to = Session.getActiveUser().getEmail();
GmailApp.sendEmail(to, 'Apps Script Test', 'Hello from Apps Script
at ' + new Date());

}

29) Search Gmail and list subject lines

Does: Finds last 5 emails matching a query.
How it works: GmailApp.search() uses Gmail search operators.

function searchGmailSubjects() {
const threads = GmailApp.search('newer_than:7d', @, 5);
threads.forEach(t => {
const msg = t.getMessages()[0];
Logger.log(msg.getDate() + ' - ' + msg.getSubject());
1)

30) Create a Calendar event

Does: Adds a 30-minute event to your primary calendar.
How it works: CalendarApp creates events with start/end dates.

function createCalendarEvent() {
const cal = CalendarApp.getDefaultCalendar();
const start = new Date();
const end = new Date(start.getTime() + 30 * 60 * 1000);
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cal.createEvent('Quick Meeting', start, end, { description: 'Created

by Apps Script' });
}

31) List upcoming Calendar events

Does: Logs next 10 events for the next 7 days.
How it works: getEvents(start, end) returns event objects.

function listUpcomingEvents() {
const cal = CalendarApp.getDefaultCalendar();
const start = new Date();

const end = new Date(start.getTime() + 7 * 24 * 60 * 60 * 1000);

const events = cal.getEvents(start, end).slice(0, 10);

events.forEach(e => Logger.log(e.getStartTime() + ' | ' +
e.getTitle()));

32) Create a Drive folder

Does: Makes a folder in your Drive.
How it works: DriveApp creates folders, returns a Folder object.

function createDriveFolder() {

const folder = DriveApp.createFolder('My Folder ' + new
Date().toISOString());

Logger.log(folder.getUrl());

33) List files in a folder by ID

Does: Lists file names from a specific folder.
How it works: Uses getFiles() iterator.
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function listFilesInFolder() {
const folderId = 'PASTE_FOLDER_ID_HERE';
const folder = DriveApp.getFolderById(folderId);
const files = folder.getFiles();

while (files.hasNext()) {
const f = files.next();
Logger.log(f.getName() + ' "+ f.getUrl());

}
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34) Copy a file

Does: Copies a Drive file and renames it.
How it works: makeCopy (newName) duplicates.

function copyDriveFile() {
const fileId = 'PASTE_FILE_ID_HERE';
const file = DriveApp.getFileById(fileId);
const copy = file.makeCopy(file.getName() + ' (Copy)');
Logger.log(copy.getUrl());
}

35) Convert a Google Doc to PDF in Drive

Does: Creates a PDF file version in Drive.
How it works: getAs(MimeType.PDF) returns a blob you can save.

function saveDocAsPdf()
const docId = 'PASTE_DOC_ID_HERE';
const file = DriveApp.getFileById(docId);
const pdfBlob = file.getAs(MimeType.PDF).setName(file.getName() +
Lopdf');
const pdfFile = DriveApp.createFile(pdfBlob);
Logger.log(pdfFile.getUrl());
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36) Fetch JSON from a public API

Does: Calls an API and parses JSON.
How it works: UrlFetch gets text; JSON.parse() makes an object.

function fetchJsonExample() {
const url = 'https://api.github.com/';
const res = UrlFetchApp.fetch(url, { muteHttpExceptions: true });
const data = JSON.parse(res.getContentText());
Logger.log(data);

37) POST JSON to a webhook

Does: Sends JSON payload to a webhook URL.
How it works: Ur1FetchApp.fetch() with method + JSON body.

function postJsonWebhook() {
const webhookUrl = 'PASTE_WEBHOOK_URL_HERE';
const payload = { event: 'test', time: new Date().toISOString() };

const res = UrlFetchApp.fetch(webhookUrl, ¢
method: 'post',
contentType: 'application/json',
payload: JSON.stringify(payload),
muteHttpExceptions: true

1)

Logger.log(res.getResponseCode() + + res.getContentText());

38) Generate a UUID
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Does: Creates a unique ID for records.
How it works: Utilities.getUuid() generates a random UUID.

function makeUuid() A
Logger.log(Utilities.getUuid());

39) Format dates consistently

Does: Logs a date formatted for spreadsheets.
How it works: Uses timezone-aware formatting.

function formatDateExample() {
const tz = Session.getScriptTimeZone();
Logger.log(Utilities.formatDate(new Date(), tz, 'yyyy-MM-dd
HH:mm:ss'));

}

40) Create an installable time trigger

Does: Runs dailyJob( ) every day at ~9am.
How it works: Installable triggers run under your account.

function createDailyTrigger() {
ScriptApp.newTrigger('dailyJob")
.timeBased()
.everyDays(1)
.atHour (9)
.create();

function dailyJob() {
Logger.log('Daily job ran at ' + new Date());
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41) Remove all triggers for this project

Does: Cleans up triggers (useful while testing).
How it works: Lists triggers then deletes them.

function deleteAllTriggers() {
ScriptApp.getProjectTriggers().forEach(t =>

ScriptApp.deleteTrigger(t));

}
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42) Simple web app (GET)

Does: Returns a plain text response from a deployed web app.
How it works: doGet (e) is the entrypoint for GET requests.

function doGet(e)
return ContentService
.createTextOutput('Hello from Apps Script web app! Time:
Date())
.setMimeType(ContentService.MimeType.TEXT);

+ new

43) Web app returning JSON

Does: Returns JSON data for frontend use.
How it works: setMimeType (JSON) makes it API-like.

function doGet(e)
const obj = { ok: true, now: new Date().toISOString() };
return ContentService
.createTextOutput(JSON.stringify(obj))
.setMimeType(ContentService.MimeType.JSON) ;
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44) HTML web app page

Does: Serves an HTML page.
How it works: HtmlService.createHtmlOutput() returns HTML.

function doGet() {
const html = °
<html>
<body style="font-family:Arial;padding:20px">
<h2>Apps Script Web App</h2>
<p>Loaded at ${new Date().toISOString()}</p>
</body>
</html>
return HtmlService.createHtmlOutput(html).setTitle( 'Web App');
}
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45) Use PropertiesService (store settings)

Does: Saves and reads a key/value setting.
How it works: Script properties persist across runs.

function saveSetting() {
PropertiesService.getScriptProperties().setProperty('API_KEY',

"demo-key');

}

function readSetting() {
const key =
PropertiesService.getScriptProperties().getProperty('API_KEY');
Logger.log( 'API_KEY: ' + key);

}

46) Locking to prevent race conditions
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Does: Prevents two runs from writing at once.
How it works: LockService provides mutex-style locks.

function safeAppendWithLock() {
const lock = LockService.getScriptLock();
lock.waitlLock(20000) ;

try {
const sheet = SpreadsheetApp.getActiveSheet();
sheet.appendRow([new Date(), 'Safe write']);

} finally {
lock.releaselLock();
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47) Create a custom function for Sheets

Does: =DOUBLE (A1) returns A1*2.

How it works: Custom functions return values and can be used in cells.

/**

* Doubles a number.

* @param {number} n input number

* @return {number} doubled

*/

function DOUBLE(n) {
*

return Number(n) 2;

48) Custom function: flatten + unique

Does: =UNIQUE_FLAT(A1:C10) returns unique values from a range.
How it works: Takes 2D array input, flattens, filters.

/**

* Returns unique non-empty values from a range.
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* @param {any[][]} range input range

* @return {any[]} unique values

*/

function UNIQUE_FLAT(range) {
const flat = range.flat().map(v => String(v).trim()).filter(v => v);
return [...new Set(flat)];

49) Add comments to cells

Does: Adds a comment to A1.
How it works: Comments help provide context for collaborators.

function addCellComment() A
const sheet = SpreadsheetApp.getActiveSheet();
sheet.getRange('A1').setComment('This cell was updated by Apps
Script.');
}

50) Read / write named ranges

Does: Sets a named range and reads it later.
How it works: Named ranges are stable references even if layout changes.

function setAndUseNamedRange() {
const ss = SpreadsheetApp.getActive();
const sheet = ss.getActiveSheet();

const range = sheet.getRange('C2:C5');
ss.setNamedRange( 'MyRange', range);

const named = ss.getRangeByName('MyRange');
named.setValue('Named range write [%4');
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