
1

Get Source Code
https://github.com/lsvekis/JavaScript-Games

1) Click Counter Sprint​ 2
2) Guess the Number​ 4
3) Rock Paper Scissors​ 6
4) Coin Flip Streak​ 8
5) Reaction Time Tester​ 9
6) Keyboard Dodger (Move a Square)​ 12
7) Simple Pong (One Paddle)​ 14
8) Whack-a-Mole (Grid)​ 17
9) Memory Match (4 pairs)​ 20
10) Tic-Tac-Toe​ 24
11) Hot/Cold Click Hunt​ 27
12) Mini “Simon Says” (4 buttons)​ 29
13) Typing Race (Words per minute)​ 32
14) Maze Walker (Grid + Walls)​ 34
15) Dice Roller Battle (Player vs CPU)​ 37

Get more Resources from Laurence Svekis https://basescripts.com/

https://github.com/lsvekis/JavaScript-Games
https://basescripts.com/

2

16) Falling Objects Catcher​ 39
17) Aim Trainer (Click Targets)​ 41
18) Endless Runner (Jump Over Blocks)​ 43
19) Simple Breakout (One Row)​ 46
20) “Find the Key” Adventure (Text Game)​ 49

1) Click Counter Sprint
Goal: Click as many times as possible in 5 seconds.​
 Practices: timers, state, DOM updates.
<!doctype html>
<html>
<head>
 <meta charset="utf-8" />
 <title>Click Sprint</title>
 <style>
 body{font-family:system-ui;padding:20px}
 button{font-size:20px;padding:12px 18px}
 .row{display:flex;gap:12px;align-items:center;margin:10px 0}
 </style>
</head>
<body>
 <h1>Click Counter Sprint</h1>
 <div class="row">
 <button id="btn" disabled>Click!</button>
 <button id="start">Start 5s</button>
 </div>

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

3

 <p>Time: 5.0 | Score: <span
id="score">0</p>
 <p id="result"></p>

<script>
const btn = document.querySelector("#btn");
const startBtn = document.querySelector("#start");
const timeEl = document.querySelector("#time");
const scoreEl = document.querySelector("#score");
const resultEl = document.querySelector("#result");

let score = 0;
let timeLeft = 5.0;
let timerId = null;
let running = false;

btn.addEventListener("click", () => {
 if (!running) return;
 score++;
 scoreEl.textContent = score;
});

startBtn.addEventListener("click", () => {
 if (running) return;
 running = true;
 score = 0;
 timeLeft = 5.0;
 scoreEl.textContent = score;
 resultEl.textContent = "";
 btn.disabled = false;

 const startTime = performance.now();
 timerId = setInterval(() => {
 const elapsed = (performance.now() - startTime) / 1000;
 timeLeft = Math.max(0, 5 - elapsed);
 timeEl.textContent = timeLeft.toFixed(1);

 if (timeLeft <= 0) {

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

4

 clearInterval(timerId);
 running = false;
 btn.disabled = true;
 resultEl.textContent = `Time! Final score: ${score}`;
 }
 }, 50);
});
</script>
</body>
</html>

Explanation

●​ score, timeLeft, running are the game state.​

●​ start resets state and starts a timer.​

●​ Using performance.now() gives smooth timing (not drifting as badly as counting
interval ticks).​

●​ Clicking increments score only when running is true.​

2) Guess the Number
Goal: Guess a random number 1–100 with hints.​
 Practices: random numbers, inputs, conditionals.
<!doctype html>
<html>
<head><meta charset="utf-8"><title>Guess</title></head>
<body style="font-family:system-ui;padding:20px">
 <h1>Guess the Number (1–100)</h1>
 <input id="guess" type="number" min="1" max="100" />

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

5

 <button id="check">Check</button>
 <button id="new">New Game</button>
 <p id="msg"></p>
 <p>Attempts: 0</p>

<script>
let secret, tries;
const guessEl = document.querySelector("#guess");
const msgEl = document.querySelector("#msg");
const triesEl = document.querySelector("#tries");

function newGame(){
 secret = Math.floor(Math.random()*100)+1;
 tries = 0;
 triesEl.textContent = tries;
 msgEl.textContent = "Enter a guess!";
 guessEl.value = "";
 guessEl.focus();
}
newGame();

document.querySelector("#check").addEventListener("click", () => {
 const g = Number(guessEl.value);
 if (!Number.isInteger(g) || g < 1 || g > 100) {
 msgEl.textContent = "Please enter an integer 1–100.";
 return;
 }
 tries++;
 triesEl.textContent = tries;

 if (g === secret) msgEl.textContent = `Correct! It was ${secret}.`;
 else if (g < secret) msgEl.textContent = "Too low!";
 else msgEl.textContent = "Too high!";
});

document.querySelector("#new").addEventListener("click", newGame);
</script>
</body>

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

6

</html>

Explanation

●​ secret is the randomly generated target.​

●​ Every click validates input, increments attempts, then compares g to secret.​

●​ newGame() resets everything so your UI never “inherits” old state.​

3) Rock Paper Scissors
Goal: Play against the computer; track score.​
 Practices: arrays, random choice, game rules.
<!doctype html>
<html>
<head><meta charset="utf-8"><title>RPS</title></head>
<body style="font-family:system-ui;padding:20px">
 <h1>Rock Paper Scissors</h1>
 <div>
 <button data-m="rock">Rock</button>
 <button data-m="paper">Paper</button>
 <button data-m="scissors">Scissors</button>
 </div>
 <p id="out"></p>
 <p>Wins: 0 Losses: 0 Ties:
0</p>

<script>
const moves = ["rock","paper","scissors"];
let w=0,l=0,t=0;
const out = document.querySelector("#out");

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

7

function winner(player, cpu){
 if (player === cpu) return "tie";
 if (
 (player==="rock" && cpu==="scissors") ||
 (player==="paper" && cpu==="rock") ||
 (player==="scissors" && cpu==="paper")
) return "win";
 return "lose";
}

document.body.addEventListener("click", (e) => {
 const btn = e.target.closest("button[data-m]");
 if (!btn) return;

 const player = btn.dataset.m;
 const cpu = moves[Math.floor(Math.random()*moves.length)];
 const res = winner(player, cpu);

 if (res==="win") w++;
 else if (res==="lose") l++;
 else t++;

 document.querySelector("#w").textContent = w;
 document.querySelector("#l").textContent = l;
 document.querySelector("#t").textContent = t;

 out.textContent = `You: ${player} | CPU: ${cpu} →
${res.toUpperCase()}`;
});
</script>
</body>
</html>

Explanation

●​ moves[] stores valid choices.​

●​ CPU move uses Math.floor(Math.random()*3).​

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

8

●​ winner() encodes rules once; UI just uses its result.​

●​ Event delegation (document.body.addEventListener) avoids attaching 3 separate
listeners.​

4) Coin Flip Streak
Goal: Flip a coin; try to hit a streak of 5 heads.​
 Practices: randomness, streak logic.
<!doctype html>
<html>
<head><meta charset="utf-8"><title>Coin Streak</title></head>
<body style="font-family:system-ui;padding:20px">
 <h1>Coin Flip Streak</h1>
 <button id="flip">Flip</button>
 <button id="reset">Reset</button>
 <p id="log"></p>
 <p>Current streak (Heads): 0</p>

<script>
let streak = 0;
const log = document.querySelector("#log");
const streakEl = document.querySelector("#streak");

document.querySelector("#flip").addEventListener("click", () => {
 const heads = Math.random() < 0.5;
 log.textContent = heads ? "HEADS!" : "TAILS!";
 if (heads) streak++;
 else streak = 0;
 streakEl.textContent = streak;
 if (streak >= 5) log.textContent = "HEADS! 🎉 You hit a 5 streak!";

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

9

});

document.querySelector("#reset").addEventListener("click", () => {
 streak = 0;
 streakEl.textContent = 0;
 log.textContent = "";
});
</script>
</body>
</html>

Explanation

●​ A coin flip is a random boolean.​

●​ Streak increments on heads, resets on tails.​

●​ Win condition: streak >= 5.​

5) Reaction Time
Tester
Goal: Click when the screen turns green; measure reaction time.​
 Practices: time measurement, random delays.
<!doctype html>
<html>
<head><meta charset="utf-8"><title>Reaction</title>
<style>

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

10

#box{width:320px;height:180px;border-radius:16px;display:grid;place-it
ems:center;

background:#ccc;user-select:none;cursor:pointer;font-family:system-ui;
font-size:20px}
</style></head>
<body style="padding:20px">
 <h1>Reaction Time</h1>
 <div id="box">Click to start</div>
 <p id="msg"></p>

<script>
const box = document.querySelector("#box");
const msg = document.querySelector("#msg");

let state = "idle"; // idle -> waiting -> go
let startMs = 0;
let timeoutId = null;

box.addEventListener("click", () => {
 if (state === "idle") {
 state = "waiting";
 msg.textContent = "Wait for green...";
 box.style.background = "#ccc";
 box.textContent = "Waiting...";

 const delay = 800 + Math.random()*2000;
 timeoutId = setTimeout(() => {
 state = "go";
 box.style.background = "#8f8";
 box.textContent = "CLICK!";
 startMs = performance.now();
 }, delay);
 } else if (state === "waiting") {
 clearTimeout(timeoutId);
 state = "idle";
 msg.textContent = "Too soon! Try again.";

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

11

 box.textContent = "Click to start";
 box.style.background = "#ccc";
 } else if (state === "go") {
 const rt = performance.now() - startMs;
 state = "idle";
 msg.textContent = `Reaction time: ${rt.toFixed(0)} ms`;
 box.textContent = "Click to start";
 box.style.background = "#ccc";
 }
});
</script>
</body>
</html>

Explanation

●​ The game uses a state machine:​

○​ idle: ready to start​

○​ waiting: random delay before “go”​

○​ go: timer started; click ends the round​

●​ Clicking early cancels the timeout and resets.​

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

12

6) Keyboard Dodger
(Move a Square)
Goal: Move your player with arrow keys and avoid a bouncing enemy.​
 Practices: canvas, keyboard input, game loop.
<!doctype html>
<html>
<head><meta charset="utf-8"><title>Dodger</title></head>
<body style="font-family:system-ui;padding:20px">
 <h1>Keyboard Dodger</h1>
 <canvas id="c" width="520" height="320" style="border:1px solid
#999"></canvas>
 <p id="status"></p>

<script>
const c = document.querySelector("#c");
const ctx = c.getContext("2d");
const status = document.querySelector("#status");

const player = {x:40,y:40,w:18,h:18,v:3};
const enemy = {x:200,y:120,w:18,h:18,vx:2.6,vy:2.0};
const keys = new Set();
let alive = true;

addEventListener("keydown", e => keys.add(e.key));
addEventListener("keyup", e => keys.delete(e.key));

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

13

function rectHit(a,b){
 return a.x < b.x+b.w && a.x+a.w > b.x && a.y < b.y+b.h && a.y+a.h >
b.y;
}

function tick(){
 ctx.clearRect(0,0,c.width,c.height);

 if (alive){
 // move player
 if (keys.has("ArrowLeft")) player.x -= player.v;
 if (keys.has("ArrowRight")) player.x += player.v;
 if (keys.has("ArrowUp")) player.y -= player.v;
 if (keys.has("ArrowDown")) player.y += player.v;

 // keep inside canvas
 player.x = Math.max(0, Math.min(c.width-player.w, player.x));
 player.y = Math.max(0, Math.min(c.height-player.h, player.y));

 // move enemy and bounce
 enemy.x += enemy.vx; enemy.y += enemy.vy;
 if (enemy.x <= 0 || enemy.x + enemy.w >= c.width) enemy.vx *= -1;
 if (enemy.y <= 0 || enemy.y + enemy.h >= c.height) enemy.vy *= -1;

 if (rectHit(player, enemy)){
 alive = false;
 status.textContent = "Game over! Refresh to retry.";
 }
 }

 // draw
 ctx.fillRect(player.x, player.y, player.w, player.h);
 ctx.fillRect(enemy.x, enemy.y, enemy.w, enemy.h);

 requestAnimationFrame(tick);
}
tick();
</script>

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

14

</body>
</html>

Explanation

●​ requestAnimationFrame() is your game loop (runs ~60fps).​

●​ Keyboard input is tracked with a Set of active keys.​

●​ Collision uses rectangle overlap math.​

●​ Bouncing is flipping velocity when you hit edges.​

7) Simple Pong (One
Paddle)
Goal: Keep the ball alive with a paddle.​
 Practices: canvas physics, collisions.
<!doctype html>
<html>
<head><meta charset="utf-8"><title>Pong Lite</title></head>
<body style="font-family:system-ui;padding:20px">
<canvas id="c" width="520" height="320" style="border:1px solid
#999"></canvas>
<p>Score: 0</p>

<script>
const c = document.querySelector("#c");
const ctx = c.getContext("2d");

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

15

const sEl = document.querySelector("#s");

const paddle = {x:20,y:120,w:12,h:80};
const ball = {x:260,y:160,r:8,vx:-3.2,vy:2.2};
let score = 0;

c.addEventListener("mousemove", (e) => {
 const rect = c.getBoundingClientRect();
 const y = e.clientY - rect.top;
 paddle.y = y - paddle.h/2;
 paddle.y = Math.max(0, Math.min(c.height-paddle.h, paddle.y));
});

function tick(){
 ctx.clearRect(0,0,c.width,c.height);

 // move ball
 ball.x += ball.vx;
 ball.y += ball.vy;

 // top/bottom bounce
 if (ball.y-ball.r <= 0 || ball.y+ball.r >= c.height) ball.vy *= -1;

 // paddle collision
 const hitPaddle =
 ball.x - ball.r <= paddle.x + paddle.w &&
 ball.y >= paddle.y && ball.y <= paddle.y + paddle.h &&
 ball.x > paddle.x;

 if (hitPaddle){
 ball.vx *= -1.05; // speed up a bit
 score++;
 sEl.textContent = score;
 }

 // miss
 if (ball.x + ball.r < 0){
 score = 0;

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

16

 sEl.textContent = score;
 ball.x = 260; ball.y = 160;
 ball.vx = -3.2; ball.vy = 2.2;
 }

 // draw
 ctx.fillRect(paddle.x,paddle.y,paddle.w,paddle.h);
 ctx.beginPath();
 ctx.arc(ball.x,ball.y,ball.r,0,Math.PI*2);
 ctx.fill();

 requestAnimationFrame(tick);
}
tick();
</script>
</body>
</html>

Explanation

●​ Paddle follows the mouse inside canvas.​

●​ Ball bounces off top/bottom by flipping vy.​

●​ Paddle hit detection checks if ball’s left edge overlaps paddle region.​

●​ Reset when the ball exits left side.​

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

17

​
8) Whack-a-Mole (Grid)
Goal: Click the highlighted cell before it moves.​
 Practices: grid DOM, intervals, event handling.
<!doctype html>
<html>
<head><meta charset="utf-8"><title>Whack</title>
<style>
 #grid{display:grid;grid-template-columns:repeat(4,70px);gap:10px}
 .cell{width:70px;height:70px;border:2px solid
#aaa;border-radius:12px;cursor:pointer}
 .on{background:#ffd56a}
</style></head>
<body style="font-family:system-ui;padding:20px">
 <h1>Whack-a-Mole</h1>
 <button id="start">Start</button>

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

18

 <p>Score: 0 | Time: <span
id="time">15</p>
 <div id="grid"></div>

<script>
const grid = document.querySelector("#grid");
const scoreEl = document.querySelector("#score");
const timeEl = document.querySelector("#time");

const cells = [];
for (let i=0;i<16;i++){
 const d = document.createElement("div");
 d.className = "cell";
 d.dataset.i = i;
 grid.appendChild(d);
 cells.push(d);
}

let score=0, time=15, active=-1, moleId=null, clockId=null;

function pickMole(){
 if (active >= 0) cells[active].classList.remove("on");
 let next;
 do next = Math.floor(Math.random()*cells.length);
 while (next === active);
 active = next;
 cells[active].classList.add("on");
}

grid.addEventListener("click", (e) => {
 const cell = e.target.closest(".cell");
 if (!cell) return;
 if (Number(cell.dataset.i) === active){
 score++;
 scoreEl.textContent = score;
 pickMole();
 }
});

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

19

document.querySelector("#start").addEventListener("click", () => {
 score=0; time=15;
 scoreEl.textContent = score;
 timeEl.textContent = time;

 pickMole();

 clearInterval(moleId);
 clearInterval(clockId);

 moleId = setInterval(pickMole, 700);
 clockId = setInterval(() => {
 time--;
 timeEl.textContent = time;
 if (time <= 0){
 clearInterval(moleId);
 clearInterval(clockId);
 if (active >= 0) cells[active].classList.remove("on");
 active = -1;
 alert(`Time! Final score: ${score}`);
 }
 }, 1000);
});
</script>
</body>
</html>

Explanation

●​ 16 divs form a clickable grid.​

●​ active holds the index of the “mole.”​

●​ Two timers run:​

○​ one moves the mole,​

○​ one counts down the time.​

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

20

9) Memory Match (4 pairs)
Goal: Flip cards to find matching pairs.​
 Practices: arrays, shuffle, state, matching logic.
<!doctype html>
<html>
<head><meta charset="utf-8"><title>Memory</title>
<style>
 #board{display:grid;grid-template-columns:repeat(4,80px);gap:10px}
 .card{height:80px;border:2px solid
#999;border-radius:12px;display:grid;place-items:center;
 font-size:28px;cursor:pointer;user-select:none}
 .down{background:#eee}
 .up{background:#c9f}
 .done{background:#8f8;cursor:default}
</style></head>
<body style="font-family:system-ui;padding:20px">
 <h1>Memory Match</h1>
 <button id="new">New</button>
 <p>Moves: 0</p>
 <div id="board"></div>

<script>
const symbols = ["🍎","🍎","⭐","⭐","🐱","🐱","⚽","⚽"];

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

21

const board = document.querySelector("#board");
const movesEl = document.querySelector("#moves");
let deck = [];
let first = null;
let lock = false;
let moves = 0;

function shuffle(arr){
 for (let i=arr.length-1;i>0;i--){
 const j = Math.floor(Math.random()*(i+1));
 [arr[i],arr[j]] = [arr[j],arr[i]];
 }
 return arr;
}

function render(){
 board.innerHTML = "";
 deck.forEach((val, idx) => {
 const d = document.createElement("div");
 d.className = "card down";
 d.dataset.idx = idx;
 d.textContent = "❓";
 board.appendChild(d);
 });
}

function newGame(){
 deck = shuffle([...symbols]);
 first = null;
 lock = false;
 moves = 0;
 movesEl.textContent = moves;
 render();
}
newGame();

board.addEventListener("click", (e) => {
 const card = e.target.closest(".card");

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

22

 if (!card || lock) return;

 const i = Number(card.dataset.idx);
 if (card.classList.contains("done") ||
card.classList.contains("up")) return;

 // flip up
 card.classList.remove("down");
 card.classList.add("up");
 card.textContent = deck[i];

 if (!first){
 first = card;
 return;
 }

 // second card
 moves++;
 movesEl.textContent = moves;

 const firstIdx = Number(first.dataset.idx);
 const match = deck[firstIdx] === deck[i];

 if (match){
 first.classList.add("done");
 card.classList.add("done");
 first = null;
 } else {
 lock = true;
 setTimeout(() => {
 first.classList.remove("up");
 first.classList.add("down");
 first.textContent = "❓";

 card.classList.remove("up");
 card.classList.add("down");
 card.textContent = "❓";

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

23

 first = null;
 lock = false;
 }, 650);
 }
});

document.querySelector("#new").addEventListener("click", newGame);
</script>
</body>
</html>

Explanation

●​ deck is a shuffled array of symbols.​

●​ first stores the first flipped card element.​

●​ lock prevents extra clicks while cards flip back.​

●​ A match marks both cards .done so they can’t be clicked again.​

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

24

10) Tic-Tac-Toe
Goal: Two-player tic tac toe with win detection.​
 Practices: arrays, win patterns.
<!doctype html>
<html>
<head><meta charset="utf-8"><title>Tic Tac Toe</title>
<style>
 #b{display:grid;grid-template-columns:repeat(3,90px);gap:8px}
 .c{width:90px;height:90px;border:2px solid #888;border-radius:14px;

display:grid;place-items:center;font-size:44px;cursor:pointer;user-sel
ect:none}
</style></head>
<body style="font-family:system-ui;padding:20px">
 <h1>Tic-Tac-Toe</h1>
 <button id="new">New</button>

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

25

 <p id="turn">Turn: X</p>
 <div id="b"></div>

<script>
const b = document.querySelector("#b");
const turnEl = document.querySelector("#turn");
const winLines = [
 [0,1,2],[3,4,5],[6,7,8],
 [0,3,6],[1,4,7],[2,5,8],
 [0,4,8],[2,4,6]
];

let board, player, over;

function newGame(){
 board = Array(9).fill("");
 player = "X";
 over = false;
 turnEl.textContent = "Turn: X";
 b.innerHTML = "";
 for (let i=0;i<9;i++){
 const d = document.createElement("div");
 d.className = "c";
 d.dataset.i = i;
 b.appendChild(d);
 }
}
newGame();

function checkWin(p){
 return winLines.some(line => line.every(i => board[i] === p));
}

b.addEventListener("click", (e) => {
 const cell = e.target.closest(".c");
 if (!cell || over) return;
 const i = Number(cell.dataset.i);
 if (board[i]) return;

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

26

 board[i] = player;
 cell.textContent = player;

 if (checkWin(player)){
 over = true;
 turnEl.textContent = `${player} wins!`;
 return;
 }
 if (board.every(v => v)){
 over = true;
 turnEl.textContent = "Draw!";
 return;
 }

 player = player === "X" ? "O" : "X";
 turnEl.textContent = `Turn: ${player}`;
});

document.querySelector("#new").addEventListener("click", newGame);
</script>
</body>
</html>

Explanation

●​ board[] stores each square (“”, “X”, “O”).​

●​ winLines lists all winning index combos.​

●​ After each move:​

○​ check win,​

○​ check draw,​

○​ swap player.​

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

27

11) Hot/Cold Click Hunt
Goal: Find a hidden point; clicks show “hotter/colder”.​
 Practices: distance math.
<!doctype html>
<html>
<head><meta charset="utf-8"><title>Hot Cold</title>
<style>
 #area{width:520px;height:320px;border:2px solid
#888;border-radius:16px;position:relative}

#dot{position:absolute;width:8px;height:8px;border-radius:50%;backgrou
nd:black;transform:translate(-50%,-50%)}
</style></head>
<body style="font-family:system-ui;padding:20px">
 <h1>Hot / Cold Hunt</h1>
 <button id="new">New</button>
 <p id="msg">Click inside the box.</p>
 <div id="area"></div>

<script>
const area = document.querySelector("#area");
const msg = document.querySelector("#msg");
let target = {x:0,y:0};
let lastDist = null;

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

28

function newGame(){
 target.x = Math.random()*area.clientWidth;
 target.y = Math.random()*area.clientHeight;
 lastDist = null;
 msg.textContent = "New target! Click inside the box.";
 area.innerHTML = "";
}
newGame();

function dist(a,b){
 const dx = a.x-b.x, dy=a.y-b.y;
 return Math.hypot(dx, dy);
}

area.addEventListener("click", (e) => {
 const rect = area.getBoundingClientRect();
 const p = {x: e.clientX - rect.left, y: e.clientY - rect.top};

 const d = dist(p, target);

 const dot = document.createElement("div");
 dot.id = "dot";
 dot.style.left = p.x + "px";
 dot.style.top = p.y + "px";
 area.appendChild(dot);

 if (d < 15){
 msg.textContent = "Found it! 🎯 Press New.";
 return;
 }

 if (lastDist === null) msg.textContent = "Keep going...";
 else msg.textContent = d < lastDist ? "Hotter 🔥" : "Colder ❄️";

 lastDist = d;
});

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

29

document.querySelector("#new").addEventListener("click", newGame);
</script>
</body>
</html>

Explanation

●​ The target is a random (x,y) inside the play area.​

●​ Each click computes distance with Math.hypot(dx,dy).​

●​ Compare distance to the previous click to say hotter/colder.​

12) Mini “Simon Says” (4 buttons)
Goal: Watch a sequence, then repeat it.​
 Practices: async timing, arrays.
<!doctype html>
<html>
<head><meta charset="utf-8"><title>Simon</title>
<style>
 .pad{width:90px;height:90px;border-radius:16px;border:2px solid
#777;cursor:pointer;opacity:.75}
 #pads{display:flex;gap:10px}
 .on{opacity:1;outline:4px solid #0002}
</style></head>
<body style="font-family:system-ui;padding:20px">
 <h1>Simon Says</h1>
 <button id="start">Start</button>
 <p id="msg"></p>
 <div id="pads">
 <div class="pad" data-i="0" style="background:#f66"></div>

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

30

 <div class="pad" data-i="1" style="background:#6f6"></div>
 <div class="pad" data-i="2" style="background:#66f"></div>
 <div class="pad" data-i="3" style="background:#ff6"></div>
 </div>

<script>
const pads = [...document.querySelectorAll(".pad")];
const msg = document.querySelector("#msg");
let seq = [];
let input = [];
let accepting = false;

const wait = (ms) => new Promise(r => setTimeout(r, ms));

async function flash(i){
 pads[i].classList.add("on");
 await wait(250);
 pads[i].classList.remove("on");
 await wait(120);
}

async function playSeq(){
 accepting = false;
 msg.textContent = "Watch…";
 for (const i of seq) await flash(i);
 input = [];
 accepting = true;
 msg.textContent = "Your turn!";
}

document.querySelector("#start").addEventListener("click", async () =>
{
 seq = [];
 seq.push(Math.floor(Math.random()*4));
 await playSeq();
});

pads.forEach(p => p.addEventListener("click", async () => {

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

31

 if (!accepting) return;
 const i = Number(p.dataset.i);
 input.push(i);
 await flash(i);

 // validate as you go
 const k = input.length - 1;
 if (input[k] !== seq[k]){
 msg.textContent = "Wrong! Press Start to try again.";
 accepting = false;
 return;
 }

 // round complete
 if (input.length === seq.length){
 msg.textContent = "Nice! Next round…";
 await wait(450);
 seq.push(Math.floor(Math.random()*4));
 await playSeq();
 }
}));
</script>
</body>
</html>

Explanation

●​ seq holds the correct pattern.​

●​ input stores what the player has clicked.​

●​ async/await + wait() makes “play sequence with delays” readable.​

●​ Validation happens after every click (good UX).​

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

32

13) Typing Race (Words per minute)
Goal: Type a sentence; measure speed and accuracy.​
 Practices: string comparison, timing.
<!doctype html>
<html>
<head><meta charset="utf-8"><title>Typing Race</title></head>
<body style="font-family:system-ui;padding:20px;max-width:750px">
 <h1>Typing Race</h1>
 <button id="new">New Sentence</button>
 <p id="target"></p>
 <textarea id="in" rows="4" style="width:100%"></textarea>
 <p id="stats"></p>

<script>
const samples = [
 "JavaScript makes the web interactive and fun to build.",
 "Small games are the best way to practice logic and timing.",
 "Type carefully, then improve speed one round at a time."
];

const targetEl = document.querySelector("#target");
const inputEl = document.querySelector("#in");
const statsEl = document.querySelector("#stats");

let target = "";
let start = 0;

function newRound(){
 target = samples[Math.floor(Math.random()*samples.length)];
 targetEl.textContent = target;
 inputEl.value = "";
 statsEl.textContent = "Start typing…";

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

33

 inputEl.focus();
 start = 0;
}
newRound();

inputEl.addEventListener("input", () => {
 if (!start) start = performance.now();

 const typed = inputEl.value;
 const elapsedMin = (performance.now() - start) / 60000;

 const words = typed.trim() ? typed.trim().split(/\s+/).length : 0;
 const wpm = elapsedMin > 0 ? Math.round(words / elapsedMin) : 0;

 // accuracy: compare chars up to typed length
 let correct = 0;
 for (let i=0;i<typed.length;i++){
 if (typed[i] === target[i]) correct++;
 }
 const acc = typed.length ? Math.round((correct/typed.length)*100) :
100;

 statsEl.textContent = `WPM: ${wpm} | Accuracy: ${acc}%`;

 if (typed === target){
 statsEl.textContent += " ✅ Finished!";
 }
});

document.querySelector("#new").addEventListener("click", newRound);
</script>
</body>
</html>

Explanation

●​ Start time begins on first input so “idle time” isn’t counted.​

●​ WPM uses words / minutes.​

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

34

●​ Accuracy compares typed characters vs target characters in the same positions.​

14) Maze Walker (Grid + Walls)
Goal: Move through a tiny maze using arrow keys.​
 Practices: grid arrays, collision rules.
<!doctype html>
<html>
<head><meta charset="utf-8"><title>Maze</title>
<style>
 #g{display:grid;grid-template-columns:repeat(10,28px);gap:4px}
 .t{width:28px;height:28px;border-radius:6px;border:1px solid #bbb}
 .w{background:#333}
 .p{background:#6cf}
 .e{background:#6f6}
</style></head>
<body style="font-family:system-ui;padding:20px">

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

35

 <h1>Maze Walker</h1>
 <p>Use arrow keys. Reach green.</p>
 <div id="g"></div>
 <p id="msg"></p>

<script>
const gridEl = document.querySelector("#g");
const msg = document.querySelector("#msg");

// 0 empty, 1 wall
const maze = [
 [0,0,0,1,0,0,0,1,0,0],
 [1,1,0,1,0,1,0,1,0,1],
 [0,0,0,0,0,1,0,0,0,0],
 [0,1,1,1,0,1,1,1,1,0],
 [0,0,0,1,0,0,0,0,1,0],
 [0,1,0,1,1,1,1,0,1,0],
 [0,1,0,0,0,0,1,0,0,0],
 [0,1,1,1,1,0,1,1,1,0],
 [0,0,0,0,0,0,0,0,1,0],
 [0,1,1,1,1,1,1,0,0,0],
];

let p = {r:0,c:0};
const end = {r:9,c:9};

function draw(){
 gridEl.innerHTML = "";
 for (let r=0;r<10;r++){
 for (let c=0;c<10;c++){
 const d = document.createElement("div");
 d.className = "t";
 if (maze[r][c] === 1) d.classList.add("w");
 if (r === end.r && c === end.c) d.classList.add("e");
 if (r === p.r && c === p.c) d.classList.add("p");
 gridEl.appendChild(d);
 }
 }

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

36

}
draw();

addEventListener("keydown", (e) => {
 const dir =
{ArrowUp:[-1,0],ArrowDown:[1,0],ArrowLeft:[0,-1],ArrowRight:[0,1]}[e.k
ey];
 if (!dir) return;

 const nr = p.r + dir[0];
 const nc = p.c + dir[1];
 if (nr < 0 || nr > 9 || nc < 0 || nc > 9) return;
 if (maze[nr][nc] === 1) return; // wall blocks movement

 p = {r:nr,c:nc};
 draw();

 if (p.r === end.r && p.c === end.c) msg.textContent = "You escaped!
🎉";
});
</script>
</body>
</html>

Explanation

●​ Maze is a 2D array of 0/1.​

●​ Movement is “attempted,” then rejected if out of bounds or on a wall.​

●​ Rendering is simple: rebuild the grid each move (fine for small boards).​

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

37

15) Dice Roller Battle (Player vs CPU)
Goal: First to 20 points wins. Each turn roll 1–6.​
 Practices: turn logic, simple UI state.
<!doctype html>
<html>
<head><meta charset="utf-8"><title>Dice Battle</title></head>
<body style="font-family:system-ui;padding:20px">
 <h1>Dice Battle (to 20)</h1>
 <button id="roll">Roll</button>
 <button id="new">New</button>
 <p id="log"></p>
 <p>You: 0 | CPU: 0</p>

<script>
let p=0, c=0, over=false;
const log = document.querySelector("#log");
const pEl = document.querySelector("#p");
const cEl = document.querySelector("#c");

function die(){ return Math.floor(Math.random()*6)+1; }
function render(){ pEl.textContent=p; cEl.textContent=c; }

function newGame(){
 p=0; c=0; over=false;
 log.textContent="Roll to begin.";

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

38

 render();
}
newGame();

document.querySelector("#roll").addEventListener("click", () => {
 if (over) return;

 const pr = die();
 p += pr;

 const cr = die();
 c += cr;

 log.textContent = `You rolled ${pr}. CPU rolled ${cr}.`;
 render();

 if (p >= 20 || c >= 20){
 over = true;
 if (p === c) log.textContent += " It's a tie!";
 else log.textContent += (p > c) ? " You win!" : " CPU wins!";
 }
});

document.querySelector("#new").addEventListener("click", newGame);
</script>
</body>
</html>

Explanation

●​ Both players roll each turn (simultaneous).​

●​ over prevents further gameplay after someone reaches 20.​

●​ Keeping render() separate prevents missed UI updates.​

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

39

16) Falling Objects Catcher
Goal: Move a basket left/right to catch falling dots.​
 Practices: canvas loop, spawning, collision.
<!doctype html>
<html>
<head><meta charset="utf-8"><title>Catcher</title></head>
<body style="font-family:system-ui;padding:20px">
<canvas id="c" width="520" height="320" style="border:1px solid
#999"></canvas>
<p>Score: 0 Misses: 0</p>

<script>
const c = document.querySelector("#c");
const ctx = c.getContext("2d");
const sEl = document.querySelector("#s");
const mEl = document.querySelector("#m");

const basket = {x:240,y:290,w:70,h:14,v:5};
const keys = new Set();
let drops = [];
let score=0, miss=0, spawn=0;

addEventListener("keydown", e => keys.add(e.key));
addEventListener("keyup", e => keys.delete(e.key));

function spawnDrop(){

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

40

 drops.push({x: Math.random()*c.width, y:-10, r:7, vy:2.2 +
Math.random()*1.5});
}

function tick(){
 ctx.clearRect(0,0,c.width,c.height);

 // move basket
 if (keys.has("ArrowLeft")) basket.x -= basket.v;
 if (keys.has("ArrowRight")) basket.x += basket.v;
 basket.x = Math.max(0, Math.min(c.width-basket.w, basket.x));

 // spawn periodically
 spawn++;
 if (spawn % 45 === 0) spawnDrop();

 // update drops
 drops = drops.filter(d => {
 d.y += d.vy;

 const caught =
 d.x >= basket.x && d.x <= basket.x + basket.w &&
 d.y + d.r >= basket.y && d.y - d.r <= basket.y + basket.h;

 if (caught){
 score++; sEl.textContent = score;
 return false;
 }
 if (d.y - d.r > c.height){
 miss++; mEl.textContent = miss;
 return false;
 }
 return true;
 });

 // draw basket
 ctx.fillRect(basket.x,basket.y,basket.w,basket.h);

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

41

 // draw drops
 for (const d of drops){
 ctx.beginPath();
 ctx.arc(d.x,d.y,d.r,0,Math.PI*2);
 ctx.fill();
 }

 requestAnimationFrame(tick);
}
tick();
</script>
</body>
</html>

Explanation

●​ Droplets are objects in an array.​

●​ Each frame: move basket, maybe spawn a new drop, move drops, check collisions.​

●​ filter() removes drops that were caught or missed (keeps array clean).​

17) Aim Trainer (Click Targets)
Goal: Click 10 targets as fast as possible.​
 Practices: positioning, timing, counting.

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

42

<!doctype html>
<html>
<head><meta charset="utf-8"><title>Aim</title>
<style>
 #arena{width:520px;height:320px;border:2px solid
#888;border-radius:16px;position:relative}

.t{position:absolute;width:30px;height:30px;border-radius:50%;backgrou
nd:#f66;cursor:pointer}
</style></head>
<body style="font-family:system-ui;padding:20px">
 <h1>Aim Trainer</h1>
 <button id="start">Start</button>
 <p id="msg"></p>
 <div id="arena"></div>

<script>
const arena = document.querySelector("#arena");
const msg = document.querySelector("#msg");

let hits=0;
let startTime=0;
let targetEl=null;

function placeTarget(){
 if (targetEl) targetEl.remove();
 targetEl = document.createElement("div");
 targetEl.className = "t";
 const x = Math.random()*(arena.clientWidth-30);
 const y = Math.random()*(arena.clientHeight-30);
 targetEl.style.left = x+"px";
 targetEl.style.top = y+"px";
 arena.appendChild(targetEl);

 targetEl.addEventListener("click", () => {
 hits++;
 if (hits >= 10){
 const ms = performance.now() - startTime;

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

43

 msg.textContent = `Done! ${ms.toFixed(0)} ms for 10 hits.`;
 placeTarget(); // optional: leave one
 return;
 }
 placeTarget();
 }, {once:true});
}

document.querySelector("#start").addEventListener("click", () => {
 hits=0;
 startTime = performance.now();
 msg.textContent = "Hit 10 targets!";
 placeTarget();
});
</script>
</body>
</html>

Explanation

●​ A target is a positioned div inside a relative container.​

●​ Each click increments hits, and you either place a new target or finish.​

●​ {once:true} ensures that target’s click handler runs only once.​

18) Endless Runner (Jump Over Blocks)
Goal: Press Space to jump over obstacles.​
 Practices: gravity, jumping, obstacles, loop.
<!doctype html>
<html>

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

44

<head><meta charset="utf-8"><title>Runner</title></head>
<body style="font-family:system-ui;padding:20px">
<canvas id="c" width="520" height="220" style="border:1px solid
#999"></canvas>
<p id="msg"></p>

<script>
const c = document.querySelector("#c");
const ctx = c.getContext("2d");
const msg = document.querySelector("#msg");

const ground = 190;
const player = {x:60,y:ground,w:18,h:24,vy:0,onGround:true};
let obs = [];
let t = 0;
let alive = true;

addEventListener("keydown", e => {
 if (e.code === "Space" && player.onGround && alive){
 player.vy = -9.5;
 player.onGround = false;
 }
 if (e.code === "Space" && !alive){
 // quick reset
 obs = []; t=0; alive=true; msg.textContent="";
 player.y=ground; player.vy=0; player.onGround=true;
 }
});

function hit(a,b){
 return a.x < b.x+b.w && a.x+a.w > b.x && a.y < b.y+b.h && a.y+a.h >
b.y;
}

function tick(){
 ctx.clearRect(0,0,c.width,c.height);

 // ground line

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

45

 ctx.fillRect(0, ground+player.h, c.width, 4);

 if (alive){
 // gravity
 player.vy += 0.45;
 player.y += player.vy;

 if (player.y >= ground){
 player.y = ground;
 player.vy = 0;
 player.onGround = true;
 }

 // spawn obstacles
 t++;
 if (t % 90 === 0){
 obs.push({x:c.width+20,y:ground+8,w:16,h:16,vx: -4.2});
 }

 // move obstacles
 obs.forEach(o => o.x += o.vx);
 obs = obs.filter(o => o.x + o.w > -10);

 // collision
 for (const o of obs){
 if (hit(player, o)){
 alive = false;
 msg.textContent = "Game over! Press Space to restart.";
 }
 }
 }

 // draw player
 ctx.fillRect(player.x, player.y, player.w, player.h);

 // draw obstacles
 obs.forEach(o => ctx.fillRect(o.x,o.y,o.w,o.h));

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

46

 requestAnimationFrame(tick);
}
tick();
</script>
</body>
</html>

Explanation

●​ Jump is setting vy negative; gravity increases vy each frame.​

●​ Ground collision clamps player to ground.​

●​ Obstacles spawn on a timer and move left.​

●​ Restart is a fast reset of arrays and state.​

19) Simple Breakout (One Row)
Goal: Bounce ball to break blocks.​
 Practices: collision detection, arrays of bricks.
<!doctype html>
<html>
<head><meta charset="utf-8"><title>Breakout</title></head>
<body style="font-family:system-ui;padding:20px">
<canvas id="c" width="520" height="320" style="border:1px solid
#999"></canvas>
<p id="msg"></p>

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

47

<script>
const c = document.querySelector("#c");
const ctx = c.getContext("2d");
const msg = document.querySelector("#msg");

const paddle = {x:220,y:290,w:90,h:12};
const ball = {x:260,y:160,r:7,vx:3,vy:3};

let bricks = [];
for (let i=0;i<8;i++){
 bricks.push({x:30+i*60,y:40,w:50,h:18,alive:true});
}

c.addEventListener("mousemove", (e) => {
 const r = c.getBoundingClientRect();
 paddle.x = (e.clientX - r.left) - paddle.w/2;
 paddle.x = Math.max(0, Math.min(c.width-paddle.w, paddle.x));
});

function circleRectHit(ball, rect){
 // clamp circle center to rectangle bounds
 const cx = Math.max(rect.x, Math.min(ball.x, rect.x+rect.w));
 const cy = Math.max(rect.y, Math.min(ball.y, rect.y+rect.h));
 const dx = ball.x - cx, dy = ball.y - cy;
 return (dx*dx + dy*dy) <= ball.r*ball.r;
}

function tick(){
 ctx.clearRect(0,0,c.width,c.height);

 ball.x += ball.vx;
 ball.y += ball.vy;

 if (ball.x-ball.r<=0 || ball.x+ball.r>=c.width) ball.vx *= -1;
 if (ball.y-ball.r<=0) ball.vy *= -1;

 // paddle bounce
 if (circleRectHit(ball, paddle) && ball.vy > 0){

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

48

 ball.vy *= -1;
 }

 // bricks
 for (const b of bricks){
 if (!b.alive) continue;
 if (circleRectHit(ball, b)){
 b.alive = false;
 ball.vy *= -1;
 break;
 }
 }

 // lose
 if (ball.y - ball.r > c.height){
 msg.textContent = "Miss! Refresh to retry.";
 }

 // win
 if (bricks.every(b => !b.alive)){
 msg.textContent = "You cleared all bricks! 🎉";
 }

 // draw
 ctx.fillRect(paddle.x,paddle.y,paddle.w,paddle.h);

 ctx.beginPath();
 ctx.arc(ball.x,ball.y,ball.r,0,Math.PI*2);
 ctx.fill();

 for (const b of bricks){
 if (!b.alive) continue;
 ctx.fillRect(b.x,b.y,b.w,b.h);
 }

 requestAnimationFrame(tick);
}
tick();

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

49

</script>
</body>
</html>

Explanation

●​ Bricks are objects with alive flags.​

●​ circleRectHit() does robust circle-rectangle collision by clamping the circle center
to the rectangle and checking radius distance.​

●​ On collision, the brick is removed and the ball bounces.​

20) “Find the Key” Adventure (Text Game)
Goal: Navigate rooms, find a key, unlock exit.​
 Practices: objects/maps, simple command parsing.
<!doctype html>
<html>
<head><meta charset="utf-8"><title>Text Adventure</title></head>
<body style="font-family:system-ui;padding:20px;max-width:750px">
 <h1>Find the Key (Text Adventure)</h1>
 <div id="out" style="border:1px solid
#aaa;border-radius:12px;padding:12px;min-height:120px"></div>
 <input id="cmd" placeholder="Type: north, south, take key, open
door" style="width:100%;padding:10px;font-size:16px" />
 <button id="go">Go</button>

<script>
const out = document.querySelector("#out");
const cmd = document.querySelector("#cmd");

const rooms = {

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

50

 hall: {desc:"You are in the hall. Doors lead east and south.",
exits:{east:"study", south:"kitchen"}},
 study: {desc:"A quiet study. There is a shiny key here. West returns
to hall.", exits:{west:"hall"}, item:"key"},
 kitchen:{desc:"A kitchen with an exit door to the south. North
returns to hall.", exits:{north:"hall", south:"exit"}}
};

let loc = "hall";
let inv = new Set();
let keyTaken = false;

function print(text){
 out.innerHTML += `<div>${text}</div>`;
 out.scrollTop = out.scrollHeight;
}

function look(){
 const r = rooms[loc];
 print(`${loc.toUpperCase()}: ${r.desc}`);
 if (r.item && !keyTaken) print("You see: key");
 print("Inventory: " + (inv.size ? [...inv].join(", ") : "(empty)"));
}

function handle(raw){
 const s = raw.trim().toLowerCase();
 if (!s) return;

 if (s === "look") { look(); return; }

 if (s.startsWith("take")){
 if (loc === "study" && !keyTaken){
 inv.add("key");
 keyTaken = true;
 print("You take the key.");
 } else {
 print("There is nothing to take.");
 }

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

51

 return;
 }

 if (s === "open door" || s === "open"){
 if (loc !== "kitchen") { print("There is no door here."); return;
}
 if (!inv.has("key")) { print("The door is locked. You need a
key."); return; }
 print("You unlock the door and escape! 🎉");
 return;
 }

 // movement: north/south/east/west
 const r = rooms[loc];
 if (["north","south","east","west"].includes(s)){
 const next = r.exits[s];
 if (!next) { print("You can't go that way."); return; }
 if (next === "exit"){
 print("The exit door is locked. Maybe try: open door");
 return;
 }
 loc = next;
 look();
 return;
 }

 print("Unknown command. Try: look, north/south/east/west, take key,
open door");
}

document.querySelector("#go").addEventListener("click", () => {
 handle(cmd.value);
 cmd.value = "";
 cmd.focus();
});
cmd.addEventListener("keydown", (e) => {
 if (e.key === "Enter") document.querySelector("#go").click();
});

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

52

print("Welcome! Commands: look, north/south/east/west, take key, open
door");
look();
</script>
</body>
</html>

Explanation

●​ rooms is a map (object) describing each location and its exits.​

●​ loc is current room; inv stores inventory.​

●​ The “parser” is just a few string checks—simple but powerful.​

●​ This is a great stepping stone toward bigger RPG mechanics.​

Get more Resources from Laurence Svekis https://basescripts.com/

https://basescripts.com/

	
	1) Click Counter Sprint
	
	2) Guess the Number
	
	3) Rock Paper Scissors
	4) Coin Flip Streak
	5) Reaction Time Tester
	6) Keyboard Dodger (Move a Square)
	7) Simple Pong (One Paddle)
	​8) Whack-a-Mole (Grid)
	
	9) Memory Match (4 pairs)
	
	10) Tic-Tac-Toe
	
	11) Hot/Cold Click Hunt
	
	12) Mini “Simon Says” (4 buttons)
	
	13) Typing Race (Words per minute)
	
	14) Maze Walker (Grid + Walls)
	
	15) Dice Roller Battle (Player vs CPU)
	
	16) Falling Objects Catcher
	
	17) Aim Trainer (Click Targets)
	
	18) Endless Runner (Jump Over Blocks)
	
	19) Simple Breakout (One Row)
	
	20) “Find the Key” Adventure (Text Game)

