1) Basics, Types, Coercion (1-15)

1) What is the result of typeof null?

A) "null" B) "object" C) "undefined" D) "number"

Answer: B

Explanation: A long-standing JS quirk: typeof null returns "object".

2) What does NaN === NaN evaluate to?

A) true B) false

Answer: B

Explanation: NaN is not equal to anything, even itself. Use Number .isNaN(x).

3) What'’s the difference between == and ===?
Answer: == coerces types; === requires same type and value.
Explanation: Prefer === to avoid surprise coercion.

4) What is the output?
console.log(® == false, @ === false);

Answer: true false
Explanation: == coerces (false — 0), === doesn’t.

5) What is the output?
console.log("5" + 1, "5" - 1);

Answer: "51" 4
Explanation: + can concatenate strings; - forces numeric conversion.

6) What does Number.isNaN("NaN") return?

A) true B) false

Answer: B

Explanation: "NaN" is a string, not the numeric NaN.

7) What is Object.is(-0, 0)?

A) true B) false

Answer: B

Explanation: Object.is distinguishes -0 and 0 (unlike ===).
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8) What are JS primitive types?
Answer: string, number, bigint, boolean, undefined, symbol, null
Explanation: Everything else is an object (including functions).

9) What is the output?
console.log(Boolean([]), Boolean({}), Boolean(""));

Answer: true true false
Explanation: Empty array/object are truthy; empty string is falsy.

10) What does parseInt("08") return (modern JS)?

A) 8 B) 0 C) NaN

Answer: A

Explanation: Modern JS defaults to base 10 unless prefixed like 0x. Best: parseInt(str,
10).

11) What is the output?
console.log(1 + "2" + 3);

Answer: "123"

Explanation: Once string concatenation starts, + keeps concatenating.

12) What'’s the difference between null and undefined?
Answer: undefined = not assigned / missing; null = intentionally empty.
Explanation: Both are “no value,” but different intent and behavior.

13) What is the output?

console.log(typeof (() => {}));

Answer: "function"
Explanation: Functions are callable objects; typeof has a special "function" result.

14) What’s the output?
console.log([] == false);

Answer: true

Explanation: [ ] coercesto "", false coerces to 0, coerces to 0.

15) What is the output?
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console.log("2" * "3");

Answer: 6
Explanation: * forces numeric conversion.

2) Scope, Hoisting, TDZ (16-30)

16) var, let, const differences?
Answer:

e var: function-scoped, hoisted (initialized as undefined).
e let/const: block-scoped, hoisted but in TDZ until declared.

e const: can’t be reassigned (but object contents can mutate).
Explanation: TDZ = Temporal Dead Zone.

17) What happens?

console.log(a);
var a = 10;

Answer: undefined
Explanation: var a is hoisted, value assigned later.

18) What happens?

console.log(b);
let b = 10;

Answer: ReferenceError
Explanation: let is in TDZ until the declaration line.

19) What is the output?

for (var i=0; i<3; i++) {}
console.log(i);

Answer: 3
Explanation: var is function-scoped, not block-scoped.

20) What is the output?
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for (let j=0; j<3; j++) {}
console.log(j);

Answer: ReferenceError
Explanation: let is block-scoped.

21) What does “hoisting” mean?
Answer: Declarations are processed before code runs.
Explanation: Variables/functions can be referenced earlier (with rules depending on type).

22) Are function declarations hoisted?
Answer: Yes, fully (name + body).
Explanation: You can call them before they appear in code.

23) Are function expressions hoisted?

foo();
var foo = function(){};

Answer: TypeError (foo is undefined at call time).
Explanation: var foo hoists as undefined, not the function value.

24) What is the output?

(function(){
console.log(x);
var X = 5;

DO

Answer: undefined
Explanation: var x hoisted within the IIFE function scope.

25) What is the output?

{

const a = 1;

}

console.log(a);

Answer: ReferenceError
Explanation: const is block-scoped.
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26) Can you reassign a const object?
Answer: You can’t reassign the variable, but you can mutate properties.
Explanation: const obj = {}; obj.x=1 works; obj={} doesn’t.

27) What’s a closure?
Answer: A function that “remembers” variables from its outer scope.
Explanation: It keeps access to those variables even after the outer function returns.

28) What is the output?

function make() {
let n = 0;
return () => ++n;
}
const inc = make();
console.log(inc(), inc(), inc());

Answer: 1 2 3
Explanation: Closure keeps n alive.

29) What’s “global scope” in browsers?
Answer: window (for non-module scripts).
Explanation: In ES modules, top-level bindings are module-scoped (not window properties).

30) What'’s the “Temporal Dead Zone”?
Answer: The time before a 1et/const is initialized where access throws.
Explanation: Prevents use-before-declare bugs.

3) Functions, this, Arrow Functions (31-45)

31) What does this refer to in a normal function (non-strict) called as obj.fn()?
Answer: ob]j
Explanation: Method call sets this to the receiver.

32) What is this in strict mode for a plain call fn()?
Answer: undefined
Explanation: No automatic binding to global object.

33) Arrow functions and this: what’s special?
Answer: Arrow functions do not bind this; they capture this from surrounding scope.
Explanation: Great for callbacks, not great for methods needing dynamic this.
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34) Output?

const obj = {

x: 10,

f: () => console.log(this.x)
¥
obj.f();

Answer: Usually undefined (in modules: undefined)
Explanation: Arrow this is not obj; it's outer this.

35) Output?

const obj = {

x: 10,

f() { console.log(this.x); }
¥
obj.f();

Answer: 10
Explanation: Normal method call binds this to obj.

36) What do call, apply, bind do?
Answer:

e call(thisArg, ...args) invoke now
e apply(thisArg, argsArray) invoke now
e bind(thisArg, ...args) return new function with bound this (and optionally args)

Explanation: bind doesn’t run immediately.

37) What is the output?

function f(a,b){ return a+b; }
console.log(f.call(null, 2, 3));

Answer: 5
Explanation: this not used; args passed directly.
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38) What is default parameter evaluation time?
Answer: At call time.
Explanation: Defaults can reference earlier parameters: function(a, b=a+1){}.

39) What'’s the difference between rest and arguments?
Answer: Rest (. ..args) is areal array; arguments is array-like, not in arrow functions.
Explanation: Prefer rest.

40) What is the output?

function f(){ return arguments.length; }
console.log(f(1,2,3));

Answer: 3
Explanation: arguments counts passed args.

41) What is “lIFE”?
Answer: Immediately Invoked Function Expression.
Explanation: (function(){ ... })() used to create private scope.

42) What is function “arity”?

Answer: fn.length = number of declared parameters (not counting rest/default after first
default).

Explanation: Useful but can be misleading with defaults.

43) What is the output?

function f(a,b=1,c){ }
console.log(f.length);

Answer: 1
Explanation: Length stops counting at first default parameter.

44) What'’s the difference: named vs anonymous function expression?
Answer: Named expressions help stack traces and recursion.
Explanation: const f = function g(){} — g isinternal name.

45) When should you avoid arrow functions?
Answer: When you need dynamic this, arguments, or as constructors.
Explanation: Arrow functions can’t be used with new.

4) Objects, Prototypes, Classes (46—60)
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46) How does prototypal inheritance work?
Answer: Objects delegate property lookup to their prototype chain.
Explanation: If not found on object, JS checks obj.__proto__, etc.

—_—

47) What does Object.create(proto) do?

Answer: Creates a new object whose prototype is proto.
Explanation: No constructor execution; pure prototype setup.

48) What is the output?

const a {x:1};
const b = Object.create(a);
console.log(b.x);

Answer: 1
Explanation: x is found on prototype a.

49) Difference between in and hasOwnProperty?

Answer: in checks own + prototype properties; hasOwnProperty checks only own.
Explanation: Important when iterating.

50) What is Object.freeze?
Answer: Prevents adding/removing/changing properties (shallow).
Explanation: Nested objects can still be mutated unless also frozen.

51) What is the output?

const o = Object.freeze({a:1});
o.a = 2;
console.log(o.a);

Answer: 1
Explanation: Assignment fails (silent in non-strict; TypeError in strict).

52) What’s the difference: Object.seal vs freeze?

Answer: seal prevents add/remove but allows changing existing writable props; freeze
prevents changes too.
Explanation: Both are shallow.

53) What are property descriptors?
Answer: Metadata like writable, enumerable, configurable, value, get/set.
Explanation: Controlled via Object.defineProperty.
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54) What does new do (high-level)?
Answer:

1. Creates new object

2. Sets prototype to constructor’s prototype

3. Binds this inside constructor

4. Returns object (unless constructor returns another object)
Explanation: Core of constructor behavior.

55) What'’s a class in JS (really)?
Answer: Syntactic sugar over prototypes.
Explanation: Methods go on ClassName.prototype.

56) What is the output?

class A { m(){ return 1; } }
const a = new A();
console.log(a.m());

Answer: 1
Explanation: Standard class method.

57) What is static in classes?
Answer: A method/property on the class itself, not instances.
Explanation: A.staticMethod() nota.staticMethod().

58) What'’s the difference: __proto__ vs prototype?
Answer:

e obj.__proto__(orObject.getPrototypeOf(obj))=object’s prototype

e Fn.prototype = prototype used for instances created via new Fn()
Explanation: People confuse these a lot.

59) What does instanceof check?
Answer: Whether a constructor’s prototype is in the object’s prototype chain.
Explanation: Can be fooled if prototypes change or across realms/iframes.
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60) How do you copy objects safely?
Answer: Depends:

e Shallow: {...0bj}/0bject.assign

e Deep: structuredClone(obj) (best) or careful custom recursion
Explanation: JSON stringify loses functions, undefined, symbols, dates, maps, etc.

5) Arrays, lteration, Functional Methods (61-70)

61) Difference between map and forEach?
Answer: map returns a new array of transformed values; forEach returns undefined.
Explanation: Use map for transformation, forEach for side effects.

62) What does filter do?
Answer: Returns new array of items where callback returns truthy.
Explanation: Doesn’t mutate original.

63) What does reduce do?
Answer: Reduces array to single value via accumulator.
Explanation: Great for sums, grouping, building objects.

64) Output?
console.log([1,2,3].reduce((a,b)=>a+b, 0));

Answer: 6
Explanation: Accumulator starts at 9.

65) Difference between slice and splice?
Answer: slice returns a copy portion (non-mutating). splice mutates (remove/insert).
Explanation: Interview classic.

66) Output?

const a=[1,2,3];
a.splice(1,1,9);
console.log(a);

Answer: [1,9,3]
Explanation: Removed index 1, inserted 9.
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67) What does Array.from do?
Answer: Creates array from iterable/array-like, optionally mapping.
Explanation: Useful for NodeLists: Array.from(document.querySelectorAll(...)).

68) What is for. . .of used for?
Answer: Iterating values of iterables (arrays, strings, maps, sets).
Explanation: Unlike for . . . in which iterates keys (and can include inherited keys).

69) Output?

const arr=[10,20];
for (const i in arr) console.log(i);

Answer: 0 then 1
Explanation: for . . .in iterates indices (as strings).

70) What’s time complexity of push vs unshift on arrays?
Answer: push is usually O(1) amortized; unshift is O(n).
Explanation: unshift shifts all indexes.

6) Async JS, Event Loop, Promises (71-90)

71) What is the event loop?

Answer: JS runs single-threaded; the event loop schedules tasks/microtasks to run when call
stack is empty.

Explanation: Explains why async callbacks run later.

72) Difference: microtask vs macrotask?

Answer: Microtasks (Promise callbacks, queueMicrotask) run before the next macrotask
(setTimeout, 1/0, Ul events).

Explanation: Microtasks drain first.

73) Output?

console.log("A");
setTimeout(()=>console.log("B"),0);
Promise.resolve().then(()=>console.log("C"));
console.log("D");

Answer: A D C B
Explanation: Promise then = microtask; setTimeout = macrotask.

Get more Content at https://basescripts.com/ by Laurence Svekis


https://basescripts.com/

74) What does async do to a function?
Answer: Makes it return a Promise automatically.
Explanation: Return value becomes resolved value; thrown error becomes rejection.

75) What does await do?

Answer: Pauses async function until Promise settles; resumes with resolved value or throws
on rejection.

Explanation: Only valid inside async functions (or top-level in modules depending
environment).

76) How do you handle errors with async/await?
Answer: try/catch around await, or handle .catch on returned Promise.
Explanation: Rejections become thrown exceptions.

77) What is Promise.all behavior?
Answer: Resolves when all resolve; rejects immediately on first rejection.
Explanation: Result order matches input order.

78) Promise.allSettled vs Promise.all?

Answer: allSettled waits for all and returns statuses; never rejects because of input
rejections.

Explanation: Good when you want results even if some fail.

79) What does Promise.race do?
Answer: Settles with the first Promise to settle (resolve or reject).
Explanation: Useful for timeouts.

80) What does Promise.any do?
Answer: Resolves with first fulfilled Promise; rejects only if all reject (AggregateError).
Explanation: “Any success wins.”

81) Why might await in a loop be slow?
Answer: It runs sequentially.
Explanation: Use Promise.all for parallel if safe.

82) Convert callback to Promise (concept)?
Answer: Wrap in new Promise((res, rej)=>...) and resolve/reject inside callback.
Explanation: “Promisify” pattern.

83) What is a “thenable”?
Answer: Any object with a . then method treated like a Promise in resolution.
Explanation: Promises “assimilate” thenables.

84) Output?

Get more Content at https://basescripts.com/ by Laurence Svekis


https://basescripts.com/

(async () => {
return 5;
}) () .then(console.log);

Answer: 5
Explanation: Async returns resolved Promise with value 5.

85) Output?

(async () => {
throw new Error("x");
})().catch(e => console.log("caught"));

Answer: caught
Explanation: Throw inside async = rejected Promise.

86) What’s the difference between .then(fn) and .then(() => fn())?
Answer: If fn needs arguments or correct binding, you might need wrapper.
Explanation: Passing fn directly passes resolved value as argument.

87) What is “async starvation” risk?
Answer: Too many microtasks can delay rendering/macrotasks.
Explanation: Microtasks drain fully before next macrotask.

88) What is AbortController used for?
Answer: Cancelling fetch/async operations via signals.
Explanation: Prevents wasted work and race conditions.

89) What is a race condition in async JS?
Answer: Outcome depends on timing/order of async operations.
Explanation: Fix with cancellation, sequencing, or single source of truth.

90) What does fetch return?
Answer: A Promise that resolves to a Response (even for HTTP errors like 404).
Explanation: You must check response. ok yourself.

7) DOM, Browser, Modules, Misc (91-100)

91) What is event delegation?
Answer: Attach one listener to a parent and handle events from children via bubbling.
Explanation: Efficient for many dynamic elements.
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92) event.target vs event.currentTarget?

Answer: target = actual clicked element; currentTarget = element with the listener.
Explanation: Crucial for delegation.

93) What is the difference between localStorage and sessionStorage?
Answer: localStorage persists; sessionStorage lasts per tab session.
Explanation: Both store strings, synchronous APIs.

94) What is CORS (high level)?
Answer: Browser security policy controlling cross-origin requests.
Explanation: Server must allow via headers; client can’t “disable” it safely.

95) What is an ES module?
Answer: JS file using import/export, with its own scope and strict mode by default.
Explanation: In browsers: <script type="module">.

96) Difference between default and named export?
Answer: Default: export default ... imported without braces; named uses braces.
Explanation: import x fromvs import {x} from.

97) What is tree shaking?
Answer: Bundler removes unused exports from final build (when code is statically analyzable).
Explanation: Helps reduce bundle size.

98) What is the difference between defer and async on script tags?
Answer:

e defer: downloads in parallel, executes in order after HTML parse

e async: downloads in parallel, executes ASAP (order not guaranteed)
Explanation: defer is safer for dependencies.

99) What is a memory leak in JS?

Answer: Objects not released because references remain (e.g., unremoved event listeners,
global caches).

Explanation: GC can’t free referenced objects.

100) What is “strict mode” and why use it?
Answer: "use strict" enforces safer rules (no accidental globals, stricter this, etc.).
Explanation: ES modules are strict by default.
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