1) Basics, Types, Coercion (1-15)

1) What is the result of typeof null?

A) "null" B) "object" C) "undefined" D) "number"

Answer: B

Explanation: A long-standing JS quirk: typeof null returns "object".

2) What does NaN === NaN evaluate to?

A) true B) false

Answer: B

Explanation: NaN is not equal to anything, even itself. Use Number .isNaN(x).

3) What'’s the difference between == and ===?
Answer: == coerces types; === requires same type and value.
Explanation: Prefer === to avoid surprise coercion.

4) What is the output?
console.log(® == false, @ === false);

Answer: true false
Explanation: == coerces (false — 0), === doesn’t.

5) What is the output?
console.log("5" + 1, "5" - 1);

Answer: "51" 4
Explanation: + can concatenate strings; - forces numeric conversion.

6) What does Number.isNaN("NaN") return?

A) true B) false

Answer: B

Explanation: "NaN" is a string, not the numeric NaN.

7) What is Object.is(-0, 0)?

A) true B) false

Answer: B

Explanation: Object.is distinguishes -0 and 0 (unlike ===).

Get more Content at https://basescripts.com/ by Laurence Svekis

https://basescripts.com/

8) What are JS primitive types?
Answer: string, number, bigint, boolean, undefined, symbol, null
Explanation: Everything else is an object (including functions).

9) What is the output?
console.log(Boolean([]), Boolean({}), Boolean(""));

Answer: true true false
Explanation: Empty array/object are truthy; empty string is falsy.

10) What does parseInt("08") return (modern JS)?

A) 8 B) 0 C) NaN

Answer: A

Explanation: Modern JS defaults to base 10 unless prefixed like 0x. Best: parseInt(str,
10).

11) What is the output?
console.log(1 + "2" + 3);

Answer: "123"

Explanation: Once string concatenation starts, + keeps concatenating.

12) What'’s the difference between null and undefined?
Answer: undefined = not assigned / missing; null = intentionally empty.
Explanation: Both are “no value,” but different intent and behavior.

13) What is the output?

console.log(typeof (() => {}));

Answer: "function"
Explanation: Functions are callable objects; typeof has a special "function" result.

14) What’s the output?
console.log([] == false);

Answer: true

Explanation: [] coercesto "", false coerces to 0, coerces to 0.

15) What is the output?

Get more Content at https://basescripts.com/ by Laurence Svekis

https://basescripts.com/

console.log("2" * "3");

Answer: 6
Explanation: * forces numeric conversion.

2) Scope, Hoisting, TDZ (16-30)

16) var, let, const differences?
Answer:

e var: function-scoped, hoisted (initialized as undefined).
e let/const: block-scoped, hoisted but in TDZ until declared.

e const: can’t be reassigned (but object contents can mutate).
Explanation: TDZ = Temporal Dead Zone.

17) What happens?

console.log(a);
var a = 10;

Answer: undefined
Explanation: var a is hoisted, value assigned later.

18) What happens?

console.log(b);
let b = 10;

Answer: ReferenceError
Explanation: let is in TDZ until the declaration line.

19) What is the output?

for (var i=0; i<3; i++) {}
console.log(i);

Answer: 3
Explanation: var is function-scoped, not block-scoped.

20) What is the output?

Get more Content at https://basescripts.com/ by Laurence Svekis

https://basescripts.com/

for (let j=0; j<3; j++) {}
console.log(j);

Answer: ReferenceError
Explanation: let is block-scoped.

21) What does “hoisting” mean?
Answer: Declarations are processed before code runs.
Explanation: Variables/functions can be referenced earlier (with rules depending on type).

22) Are function declarations hoisted?
Answer: Yes, fully (name + body).
Explanation: You can call them before they appear in code.

23) Are function expressions hoisted?

foo();
var foo = function(){};

Answer: TypeError (foo is undefined at call time).
Explanation: var foo hoists as undefined, not the function value.

24) What is the output?

(function(){
console.log(x);
var X = 5;

DO

Answer: undefined
Explanation: var x hoisted within the IIFE function scope.

25) What is the output?

{

const a = 1;

}

console.log(a);

Answer: ReferenceError
Explanation: const is block-scoped.

Get more Content at https://basescripts.com/ by Laurence Svekis

https://basescripts.com/

26) Can you reassign a const object?
Answer: You can’t reassign the variable, but you can mutate properties.
Explanation: const obj = {}; obj.x=1 works; obj={} doesn’t.

27) What’s a closure?
Answer: A function that “remembers” variables from its outer scope.
Explanation: It keeps access to those variables even after the outer function returns.

28) What is the output?

function make() {
let n = 0;
return () => ++n;
}
const inc = make();
console.log(inc(), inc(), inc());

Answer: 1 2 3
Explanation: Closure keeps n alive.

29) What’s “global scope” in browsers?
Answer: window (for non-module scripts).
Explanation: In ES modules, top-level bindings are module-scoped (not window properties).

30) What'’s the “Temporal Dead Zone”?
Answer: The time before a 1et/const is initialized where access throws.
Explanation: Prevents use-before-declare bugs.

3) Functions, this, Arrow Functions (31-45)

31) What does this refer to in a normal function (non-strict) called as obj.fn()?
Answer: ob]j
Explanation: Method call sets this to the receiver.

32) What is this in strict mode for a plain call fn()?
Answer: undefined
Explanation: No automatic binding to global object.

33) Arrow functions and this: what’s special?
Answer: Arrow functions do not bind this; they capture this from surrounding scope.
Explanation: Great for callbacks, not great for methods needing dynamic this.

Get more Content at https://basescripts.com/ by Laurence Svekis

https://basescripts.com/

34) Output?

const obj = {

x: 10,

f: () => console.log(this.x)
¥
obj.f();

Answer: Usually undefined (in modules: undefined)
Explanation: Arrow this is not obj; it's outer this.

35) Output?

const obj = {

x: 10,

f() { console.log(this.x); }
¥
obj.f();

Answer: 10
Explanation: Normal method call binds this to obj.

36) What do call, apply, bind do?
Answer:

e call(thisArg, ...args) invoke now
e apply(thisArg, argsArray) invoke now
e bind(thisArg, ...args) return new function with bound this (and optionally args)

Explanation: bind doesn’t run immediately.

37) What is the output?

function f(a,b){ return a+b; }
console.log(f.call(null, 2, 3));

Answer: 5
Explanation: this not used; args passed directly.

Get more Content at https://basescripts.com/ by Laurence Svekis

https://basescripts.com/

38) What is default parameter evaluation time?
Answer: At call time.
Explanation: Defaults can reference earlier parameters: function(a, b=a+1){}.

39) What'’s the difference between rest and arguments?
Answer: Rest (. ..args) is areal array; arguments is array-like, not in arrow functions.
Explanation: Prefer rest.

40) What is the output?

function f(){ return arguments.length; }
console.log(f(1,2,3));

Answer: 3
Explanation: arguments counts passed args.

41) What is “lIFE”?
Answer: Immediately Invoked Function Expression.
Explanation: (function(){ ... })() used to create private scope.

42) What is function “arity”?

Answer: fn.length = number of declared parameters (not counting rest/default after first
default).

Explanation: Useful but can be misleading with defaults.

43) What is the output?

function f(a,b=1,c){ }
console.log(f.length);

Answer: 1
Explanation: Length stops counting at first default parameter.

44) What'’s the difference: named vs anonymous function expression?
Answer: Named expressions help stack traces and recursion.
Explanation: const f = function g(){} — g isinternal name.

45) When should you avoid arrow functions?
Answer: When you need dynamic this, arguments, or as constructors.
Explanation: Arrow functions can’t be used with new.

4) Objects, Prototypes, Classes (46—60)

Get more Content at https://basescripts.com/ by Laurence Svekis

https://basescripts.com/

46) How does prototypal inheritance work?
Answer: Objects delegate property lookup to their prototype chain.
Explanation: If not found on object, JS checks obj.__proto__, etc.

—_—

47) What does Object.create(proto) do?

Answer: Creates a new object whose prototype is proto.
Explanation: No constructor execution; pure prototype setup.

48) What is the output?

const a {x:1};
const b = Object.create(a);
console.log(b.x);

Answer: 1
Explanation: x is found on prototype a.

49) Difference between in and hasOwnProperty?

Answer: in checks own + prototype properties; hasOwnProperty checks only own.
Explanation: Important when iterating.

50) What is Object.freeze?
Answer: Prevents adding/removing/changing properties (shallow).
Explanation: Nested objects can still be mutated unless also frozen.

51) What is the output?

const o = Object.freeze({a:1});
o.a = 2;
console.log(o.a);

Answer: 1
Explanation: Assignment fails (silent in non-strict; TypeError in strict).

52) What’s the difference: Object.seal vs freeze?

Answer: seal prevents add/remove but allows changing existing writable props; freeze
prevents changes too.
Explanation: Both are shallow.

53) What are property descriptors?
Answer: Metadata like writable, enumerable, configurable, value, get/set.
Explanation: Controlled via Object.defineProperty.

Get more Content at https://basescripts.com/ by Laurence Svekis

https://basescripts.com/

54) What does new do (high-level)?
Answer:

1. Creates new object

2. Sets prototype to constructor’s prototype

3. Binds this inside constructor

4. Returns object (unless constructor returns another object)
Explanation: Core of constructor behavior.

55) What'’s a class in JS (really)?
Answer: Syntactic sugar over prototypes.
Explanation: Methods go on ClassName.prototype.

56) What is the output?

class A { m(){ return 1; } }
const a = new A();
console.log(a.m());

Answer: 1
Explanation: Standard class method.

57) What is static in classes?
Answer: A method/property on the class itself, not instances.
Explanation: A.staticMethod() nota.staticMethod().

58) What'’s the difference: __proto__ vs prototype?
Answer:

e obj.__proto__(orObject.getPrototypeOf(obj))=object’s prototype

e Fn.prototype = prototype used for instances created via new Fn()
Explanation: People confuse these a lot.

59) What does instanceof check?
Answer: Whether a constructor’s prototype is in the object’s prototype chain.
Explanation: Can be fooled if prototypes change or across realms/iframes.

Get more Content at https://basescripts.com/ by Laurence Svekis

https://basescripts.com/

60) How do you copy objects safely?
Answer: Depends:

e Shallow: {...0bj}/0bject.assign

e Deep: structuredClone(obj) (best) or careful custom recursion
Explanation: JSON stringify loses functions, undefined, symbols, dates, maps, etc.

5) Arrays, lteration, Functional Methods (61-70)

61) Difference between map and forEach?
Answer: map returns a new array of transformed values; forEach returns undefined.
Explanation: Use map for transformation, forEach for side effects.

62) What does filter do?
Answer: Returns new array of items where callback returns truthy.
Explanation: Doesn’t mutate original.

63) What does reduce do?
Answer: Reduces array to single value via accumulator.
Explanation: Great for sums, grouping, building objects.

64) Output?
console.log([1,2,3].reduce((a,b)=>a+b, 0));

Answer: 6
Explanation: Accumulator starts at 9.

65) Difference between slice and splice?
Answer: slice returns a copy portion (non-mutating). splice mutates (remove/insert).
Explanation: Interview classic.

66) Output?

const a=[1,2,3];
a.splice(1,1,9);
console.log(a);

Answer: [1,9,3]
Explanation: Removed index 1, inserted 9.

Get more Content at https://basescripts.com/ by Laurence Svekis

https://basescripts.com/

67) What does Array.from do?
Answer: Creates array from iterable/array-like, optionally mapping.
Explanation: Useful for NodeLists: Array.from(document.querySelectorAll(...)).

68) What is for. . .of used for?
Answer: Iterating values of iterables (arrays, strings, maps, sets).
Explanation: Unlike for . . . in which iterates keys (and can include inherited keys).

69) Output?

const arr=[10,20];
for (const i in arr) console.log(i);

Answer: 0 then 1
Explanation: for . . .in iterates indices (as strings).

70) What’s time complexity of push vs unshift on arrays?
Answer: push is usually O(1) amortized; unshift is O(n).
Explanation: unshift shifts all indexes.

6) Async JS, Event Loop, Promises (71-90)

71) What is the event loop?

Answer: JS runs single-threaded; the event loop schedules tasks/microtasks to run when call
stack is empty.

Explanation: Explains why async callbacks run later.

72) Difference: microtask vs macrotask?

Answer: Microtasks (Promise callbacks, queueMicrotask) run before the next macrotask
(setTimeout, 1/0, Ul events).

Explanation: Microtasks drain first.

73) Output?

console.log("A");
setTimeout(()=>console.log("B"),0);
Promise.resolve().then(()=>console.log("C"));
console.log("D");

Answer: A D C B
Explanation: Promise then = microtask; setTimeout = macrotask.

Get more Content at https://basescripts.com/ by Laurence Svekis

https://basescripts.com/

74) What does async do to a function?
Answer: Makes it return a Promise automatically.
Explanation: Return value becomes resolved value; thrown error becomes rejection.

75) What does await do?

Answer: Pauses async function until Promise settles; resumes with resolved value or throws
on rejection.

Explanation: Only valid inside async functions (or top-level in modules depending
environment).

76) How do you handle errors with async/await?
Answer: try/catch around await, or handle .catch on returned Promise.
Explanation: Rejections become thrown exceptions.

77) What is Promise.all behavior?
Answer: Resolves when all resolve; rejects immediately on first rejection.
Explanation: Result order matches input order.

78) Promise.allSettled vs Promise.all?

Answer: allSettled waits for all and returns statuses; never rejects because of input
rejections.

Explanation: Good when you want results even if some fail.

79) What does Promise.race do?
Answer: Settles with the first Promise to settle (resolve or reject).
Explanation: Useful for timeouts.

80) What does Promise.any do?
Answer: Resolves with first fulfilled Promise; rejects only if all reject (AggregateError).
Explanation: “Any success wins.”

81) Why might await in a loop be slow?
Answer: It runs sequentially.
Explanation: Use Promise.all for parallel if safe.

82) Convert callback to Promise (concept)?
Answer: Wrap in new Promise((res, rej)=>...) and resolve/reject inside callback.
Explanation: “Promisify” pattern.

83) What is a “thenable”?
Answer: Any object with a . then method treated like a Promise in resolution.
Explanation: Promises “assimilate” thenables.

84) Output?

Get more Content at https://basescripts.com/ by Laurence Svekis

https://basescripts.com/

(async () => {
return 5;
}) () .then(console.log);

Answer: 5
Explanation: Async returns resolved Promise with value 5.

85) Output?

(async () => {
throw new Error("x");
})().catch(e => console.log("caught"));

Answer: caught
Explanation: Throw inside async = rejected Promise.

86) What’s the difference between .then(fn) and .then(() => fn())?
Answer: If fn needs arguments or correct binding, you might need wrapper.
Explanation: Passing fn directly passes resolved value as argument.

87) What is “async starvation” risk?
Answer: Too many microtasks can delay rendering/macrotasks.
Explanation: Microtasks drain fully before next macrotask.

88) What is AbortController used for?
Answer: Cancelling fetch/async operations via signals.
Explanation: Prevents wasted work and race conditions.

89) What is a race condition in async JS?
Answer: Outcome depends on timing/order of async operations.
Explanation: Fix with cancellation, sequencing, or single source of truth.

90) What does fetch return?
Answer: A Promise that resolves to a Response (even for HTTP errors like 404).
Explanation: You must check response. ok yourself.

7) DOM, Browser, Modules, Misc (91-100)

91) What is event delegation?
Answer: Attach one listener to a parent and handle events from children via bubbling.
Explanation: Efficient for many dynamic elements.

Get more Content at https://basescripts.com/ by Laurence Svekis

https://basescripts.com/

92) event.target vs event.currentTarget?

Answer: target = actual clicked element; currentTarget = element with the listener.
Explanation: Crucial for delegation.

93) What is the difference between localStorage and sessionStorage?
Answer: localStorage persists; sessionStorage lasts per tab session.
Explanation: Both store strings, synchronous APIs.

94) What is CORS (high level)?
Answer: Browser security policy controlling cross-origin requests.
Explanation: Server must allow via headers; client can’t “disable” it safely.

95) What is an ES module?
Answer: JS file using import/export, with its own scope and strict mode by default.
Explanation: In browsers: <script type="module">.

96) Difference between default and named export?
Answer: Default: export default ... imported without braces; named uses braces.
Explanation: import x fromvs import {x} from.

97) What is tree shaking?
Answer: Bundler removes unused exports from final build (when code is statically analyzable).
Explanation: Helps reduce bundle size.

98) What is the difference between defer and async on script tags?
Answer:

e defer: downloads in parallel, executes in order after HTML parse

e async: downloads in parallel, executes ASAP (order not guaranteed)
Explanation: defer is safer for dependencies.

99) What is a memory leak in JS?

Answer: Objects not released because references remain (e.g., unremoved event listeners,
global caches).

Explanation: GC can’t free referenced objects.

100) What is “strict mode” and why use it?
Answer: "use strict" enforces safer rules (no accidental globals, stricter this, etc.).
Explanation: ES modules are strict by default.

Get more Content at https://basescripts.com/ by Laurence Svekis

https://basescripts.com/

	1) Basics, Types, Coercion (1–15)
	2) Scope, Hoisting, TDZ (16–30)
	3) Functions, this, Arrow Functions (31–45)
	4) Objects, Prototypes, Classes (46–60)
	5) Arrays, Iteration, Functional Methods (61–70)
	6) Async JS, Event Loop, Promises (71–90)
	7) DOM, Browser, Modules, Misc (91–100)

