

1 FOUNDATIONS: PERSONALIZED LEARNING	3
🎯 Exercise 1 — Personal Learning Profile (FOUNDATIONAL)	3
🎯 Exercise 2 — Three Levels of Explanation	4
🎯 Exercise 3 — Vibe Stretch Explanation (Personalization)	5
🎯 Exercise 4 — Reflection	5
2 PROMPTING AS THINKING	6
🎯 Exercise 1 — Prompt Quality Upgrade	6
🎯 Exercise 2 — Prompt Comparison	6
🎯 Exercise 3 — Prompt Rewrite Practice	6
3 ACTIVE LEARNING (OUTPUT > INPUT)	8
🎯 Exercise 1 — Explain It Back	8
🎯 Exercise 2 — Teach a Beginner	8
🎯 Exercise 3 — Mini Output Task	8
4 MEMORY & RETENTION	9
🎯 Exercise 1 — AI Memory Stack	9
🎯 Exercise 2 — Active Recall	9
🎯 Exercise 3 — 24-Hour Recall	9
5 PRACTICE DESIGN	10
🎯 Exercise 1 — Micro-Practice Design	10
🎯 Exercise 2 — Difficulty Calibration	10

🎯 Exercise 3 — Practice Reflection	10
🎯 Exercise 4 — Practice Transfer	10
🎯 Exercise 5 — Practice Upgrade	11
6 FEEDBACK LOOPS	12
🎯 Exercise 1 — AI Critique (Core Feedback Loop)	12
🎯 Exercise 2 — Feedback Reapplication	12
🎯 Exercise 3 — Error-Focused Learning	13
🎯 Exercise 4 — Feedback Reflection	13
7 LEARNING RHYTHMS & CONSISTENCY	14
🎯 Exercise 1 — Weekly Learning Rhythm	14
🎯 Exercise 2 — Energy Mapping	14
🎯 Exercise 3 — Minimum Viable Learning	14
🎯 Exercise 4 — Rhythm Review	15
8 LEARNING SIGNALS	16
🎯 Exercise 1 — Confusion Signals	16
🎯 Exercise 2 — Overload Signals	16
🎯 Exercise 3 — Flow Signals	16
🎯 Exercise 4 — Signal Checklist	16
9 CLARITY OVER SPEED	18
🎯 Exercise 1 — Slow It Down	18
🎯 Exercise 2 — One-Sentence Test	18
🎯 Exercise 3 — Clarity Check	18
🎯 Exercise 4 — Clarity Reflection	18
10 SELF-SUSTAINING LEARNING SYSTEMS	19
🎯 Exercise 1 — Learning System Design	19
🎯 Exercise 2 — System Stress Test	19
🎯 Exercise 3 — System Personalization	19
🎯 Exercise 4 — Automation Prompt	19
🎯 Exercise 5 — System Reflection	20
11 THINKING CLEARLY & ASSUMPTIONS	21
🎯 Exercise 1 — Assumption Identification	21
🎯 Exercise 2 — Assumption Testing	21
🎯 Exercise 3 — Assumption Replacement	21
🎯 Exercise 4 — Reflection	22
12 LEARNING DEPTH & SCOPE	23
🎯 Exercise 1 — Depth Calibration	23
🎯 Exercise 2 — Depth Map	23
🎯 Exercise 3 — Overlearning Detection	23
🎯 Exercise 4 — Reflection	23
13 TRADEOFFS & PRIORITIZATION	25
🎯 Exercise 1 — Tradeoff Analysis	25

🎯 Exercise 2 — Compare Options	25
🎯 Exercise 3 — Priority Decision	25
🎯 Exercise 4 — Reflection	25
14 LEARNING SYSTEMS & WORKFLOWS	26
🎯 Exercise 1 — Learning System Mapping	26
🎯 Exercise 2 — Bottleneck Detection	26
🎯 Exercise 3 — System Optimization	26
🎯 Exercise 4 — Automation Prompt	26
🎯 Exercise 5 — Reflection	27
15 BUILDING & TEACHING FOR MASTERY	28
🎯 Exercise 1 — Builder Mode	28
🎯 Exercise 2 — Teacher Mode	28
🎯 Exercise 3 — Explanation Critique	28
🎯 Exercise 4 — Reflection	28
🎯 Exercise 5 — Asset Creation	28
16 STRATEGIC FORGETTING	30
🎯 Exercise 1 — What to Ignore Right Now	30
🎯 Exercise 2 — The 80/20 Filter	30
🎯 Exercise 3 — Overlearning Trap Detection	30
🎯 Exercise 4 — Learn-Later List	30
🎯 Exercise 5 — Weekly Forgetting Review	31
17 JUDGMENT & DECISION THINKING	32
🎯 Exercise 1 — Goal Clarification	32
🎯 Exercise 2 — Assumption Audit	32
🎯 Exercise 3 — Tradeoff Mapping	32
🎯 Exercise 4 — Scenario Simulation	32
🎯 Exercise 5 — Reflection	32
18 ADVANCED PROJECT DESIGN	33
🎯 Exercise 1 — Project Goal & Signal	33
🎯 Exercise 2 — Constraint Design	33
🎯 Exercise 3 — Tradeoff Documentation	33
🎯 Exercise 4 — Explanation Layer	33
🎯 Exercise 5 — Portfolio Placement	33
19 CAREER LEVERAGE & COMPOUNDING SKILLS	34
🎯 Exercise 1 — Skill Inventory	34
🎯 Exercise 2 — Leverage Filter	34
🎯 Exercise 3 — Future-Proofing	34
🎯 Exercise 4 — Skill Stack Design	34
🎯 Exercise 5 — Intentional Exclusion	34
20 — META-LEARNING	35
🎯 Exercise 1 — Look Back (Learning Evidence)	35

⌚ Exercise 2 — Pattern Detection	35
⌚ Exercise 3 — One-Variable Experiment	35
⌚ Exercise 4 — Learning Signals Dashboard	35
⌚ Exercise 5 — Meta-Learner Statement	35

1 FOUNDATIONS: PERSONALIZED LEARNING

Goal of Issue 1:

Teach AI how *you* learn, and teach *you* how to control explanations.

🎯 Exercise 1 — Personal Learning Profile (FOUNDATIONAL)

What the Learner Does

You teach the AI who you are as a learner so it stops guessing.

Prompt

Ask me 12 questions to create my Personal Learning Profile.
Use it to guide how you teach me going forward.

Example AI Questions (Excerpt)

- Why are you learning this topic?
- What usually frustrates you when learning?
- How much time can you realistically spend?
- Do you prefer examples or explanations first?
- What makes you lose motivation?
- What has worked for you in the past?

Example Learner Answers (Excerpt)

- "I get overwhelmed by long explanations."
- "I learn best when I can try something quickly."
- "I only have about 20 minutes a day."
- "I want practical outcomes, not theory."

Follow-Up Prompt

Summarize my Personal Learning Profile and use it to guide how you teach me.

Example AI Output

You learn best through short explanations, concrete examples, and immediate practice.
You become overwhelmed by abstract theory and benefit from slower pacing.
You prefer practical, real-world applications and frequent feedback.

What This Result Means

AI now adapts **pace, depth, tone, and structure** to you.

Why This Improves Learning

Most frustration comes from mismatch — not inability.

This removes the mismatch.

How the Learner Creates Their Own Version

Answer honestly. Save the summary. Reuse forever.

Exercise 2 — Three Levels of Explanation

What the Learner Does

You learn to control **complexity and depth**.

Prompt

Explain [TOPIC] at three levels:

- 1) Explain like I'm 10
- 2) Beginner adult
- 3) Expert

Keep each explanation short.

Example Topic: Python Functions

Level 1

A function is like a small machine that does a job for you.

Level 2

A reusable block of code that performs a task so you don't repeat yourself.

Level 3

An encapsulated unit of execution enabling modular, maintainable systems.

What This Result Means

Confusion often means **wrong level**, not lack of intelligence.

Why This Improves Learning

You stop jumping to expert explanations too early.

Exercise 3 — Vibe Stretch Explanation (Personalization)

Prompt

Rewrite the beginner explanation using examples from my life based on my Personal Learning Profile.

Example Output

A Python function is like a spreadsheet formula you reuse instead of rewriting calculations.

Why This Improves Learning

The brain retains information faster when it connects to existing knowledge.

Exercise 4 — Reflection

Journal Questions

- Which explanation connected most?
- What felt confusing?
- What felt unnecessary?
- What example helped?

Example Reflection

The spreadsheet example made it click.

The expert explanation felt unnecessary right now.

Why Reflection Matters

Reflection converts exposure into **self-awareness**.

2 PROMPTING AS THINKING

Goal of Issue 2:

Teach learners that prompting is *thinking*, not typing.

🎯 Exercise 1 — Prompt Quality Upgrade

Prompt

Rewrite my last prompt to be clearer, more focused, and better aligned with my learning goal.

Example Before

“Teach me Python.”

Example After (AI Output)

“Teach me Python basics focused on automation tasks, using short explanations and hands-on exercises, skipping advanced theory for now.”

What This Result Means

The learner sees how **clarity changes outcomes**.

Why This Improves Learning

Better prompts = better structure = better thinking.

🎯 Exercise 2 — Prompt Comparison

Prompt

Compare my original prompt and the improved prompt.

Explain why the improved one works better.

Example AI Output

The improved prompt defines goal, scope, style, and constraints, allowing targeted teaching instead of guessing.

Why This Matters

Learners internalize *why* good prompts work.

🎯 Exercise 3 — Prompt Rewrite Practice

Task

Rewrite a bad prompt into a good one.

Example

Bad:

“Explain AI.”

Good:

“Explain how generative AI works at a beginner level, using simple analogies and real-world examples, focused on learning and productivity.”

3 ACTIVE LEARNING (OUTPUT > INPUT)

Goal of Issue 3:

Teach that understanding is proven through **output**, not consumption.

🎯 Exercise 1 — Explain It Back

Prompt

Ask me to explain this concept in my own words and then correct or improve my explanation.

Example Learner Explanation

“A function is code that runs when called.”

Example AI Feedback

This is correct, but you’re missing the idea of reuse and how functions reduce repetition.

Why This Improves Learning

Explanation reveals gaps instantly.

🎯 Exercise 2 — Teach a Beginner

Prompt

Help me explain this concept to someone one step behind me.

Example Output

You can say: “A function saves work by letting you reuse logic.”

🎯 Exercise 3 — Mini Output Task

Prompt

Give me one small task that proves I understand this concept.

Example Output

Write a function that adds two numbers and prints the result.

4 MEMORY & RETENTION

Goal of Issue 4:

Teach learners how to **remember**, not just understand.

🎯 Exercise 1 — AI Memory Stack

Prompt

Convert this concept into:

- 1 metaphor
- 3 keywords
- 1 sentence
- 1 recall question

Example Output

- Metaphor: Toolbelt
- Keywords: reuse, clarity, abstraction
- Sentence: Functions package repeated logic.
- Recall question: When should I use a function?

Why This Improves Learning

Memory strengthens through compression.

🎯 Exercise 2 — Active Recall

Prompt

Quiz me on this concept without showing the answers first.

Example Output

What problem do functions solve?

🎯 Exercise 3 — 24-Hour Recall

Task

Re-answer the recall question the next day without notes.

5 PRACTICE DESIGN

Goal of Issue 5:

Teach learners how to design **effective practice**, not just “study.”

🎯 Exercise 1 — Micro-Practice Design

Prompt

Design a 5-minute practice task for this concept.

Example Output

Write a function that calculates a discount from a price.

🎯 Exercise 2 — Difficulty Calibration

Prompt

Make this practice slightly harder, but not overwhelming.

Example Output

Add input validation and test with different values.

🎯 Exercise 3 — Practice Reflection

Journal Questions

- What part was easy?
- What slowed me down?
- What do I need clarified?

Example Reflection

Writing the function was easy.

Debugging errors slowed me down.

🎯 Exercise 4 — Practice Transfer

Prompt

Give me one real-world scenario where I could use this skill.

Example Output

Automating repetitive spreadsheet calculations.

Exercise 5 — Practice Upgrade

Prompt

How can I practice this skill more effectively next time?

Example Output

Add immediate feedback and repeat with slight variation.

6 FEEDBACK LOOPS

Learning accelerates when feedback is immediate and specific

Goal of Issue 6:

Teach learners how to use AI as a **feedback engine**, not a praise machine.

Exercise 1 — AI Critique (Core Feedback Loop)

What the Learner Does

Submit work and request **constructive critique**, not validation.

Prompt

Review my work and give me:

- what's correct
- what's unclear
- what's missing
- what I should improve first

Be direct and specific.

Example Learner Work

“A Python function is code that runs when called.”

Example AI Output

- Correct: Functions execute code when called
- Unclear: You didn't explain why functions are useful
- Missing: The idea of reuse and organization
- Improve first: Add a real-world example

What This Result Means

The learner sees **exactly where understanding breaks down**.

Why This Improves Learning

Generic praise slows learning.

Targeted critique speeds it up.

How Learners Create Their Own Version

Submit *anything*: explanations, code, notes, decisions, drafts.

Exercise 2 — Feedback Reapplication

Prompt

Rewrite my explanation using your feedback.

Example Output

A Python function lets you reuse code instead of rewriting the same logic repeatedly.

Why This Matters

Learning improves through **iteration**, not repetition.

Exercise 3 — Error-Focused Learning

Prompt

List the most common mistakes learners make with this concept and how to avoid them.

Example Output

- Forgetting parameters
- Overcomplicating logic
- Not testing edge cases

Why This Improves Learning

Knowing errors in advance reduces fear and speeds correction.

Exercise 4 — Feedback Reflection

Journal

- What feedback surprised me?
- What feedback helped most?
- What do I need to focus on next?

7 LEARNING RHYTHMS & CONSISTENCY

Systems beat motivation

Goal of Issue 7:

Help learners design **repeatable rhythms** that fit real life.

Exercise 1 — Weekly Learning Rhythm

Prompt

Help me design a weekly learning rhythm
that fits my schedule, energy, and attention span.

Example Output

- Mon/Wed/Fri: 20 min learning + practice
- Sunday: 15 min review & reflection

Why This Matters

Learning becomes **predictable**, not emotional.

Exercise 2 — Energy Mapping

Prompt

Ask me questions to identify when my energy is highest
and lowest during the week.

Example Output

Best energy: mornings
Worst energy: late evenings

Meaning

You align learning with **biology**, not willpower.

Exercise 3 — Minimum Viable Learning

Prompt

Design a “minimum viable” learning session
I can do even on bad days.

Example Output

Read 1 example, answer 1 recall question, stop.

Why This Improves Learning

Consistency survives low-motivation days.

Exercise 4 — Rhythm Review

Journal

- What sessions worked best?
- What felt forced?
- What should I change next week?

8 LEARNING SIGNALS

Your brain gives feedback — if you listen

Goal of Issue 8:

Teach learners to recognize **signals** instead of blaming themselves.

Exercise 1 — Confusion Signals

Prompt

Help me identify how confusion shows up for me.

Ask clarifying questions first.

Example Output

- Re-reading without clarity
- Feeling mentally “stuck”
- Asking “wait, what?” often

Exercise 2 — Overload Signals

Prompt

Help me identify my overload signals.

Example Output

- Switching resources repeatedly
- Feeling pressured to learn everything
- Irritation or fatigue

Exercise 3 — Flow Signals

Prompt

Help me identify how I know I’m learning well.

Example Output

- Can predict next steps
- Can explain simply
- Can apply without notes

Exercise 4 — Signal Checklist

Output Example

If confused → simplify
If overloaded → stop and review
If in flow → continue

Why This Improves Learning

Signals allow **real-time adjustment**, not post-mortems.

9 CLARITY OVER SPEED

Slow learning beats fast forgetting

Goal of Issue 9:

Teach learners to value **clarity** over rushing.

Exercise 1 — Slow It Down

Prompt

Explain this concept more slowly
using fewer ideas and simpler language.

Example Output

A function saves work by letting you reuse steps.

Exercise 2 — One-Sentence Test

Prompt

Help me reduce this concept to one clear sentence.

Example Output

Functions package repeated logic into reusable steps.

Exercise 3 — Clarity Check

Prompt

What part of this concept is essential
and what can be ignored for now?

Meaning

Learners stop overloading themselves.

Exercise 4 — Clarity Reflection

Journal

- What finally clicked?
- What wasn't needed?
- What will I skip next time?

10 SELF-SUSTAINING LEARNING SYSTEMS

Learning that runs without motivation

Goal of Issue 10:

Help learners design a **reusable learning system**.

Exercise 1 — Learning System Design

Prompt

Design a **reusable learning system** I can use for any topic.

Include intake, practice, feedback, and review.

Example Output

- Intake — short explanation
- Practice — small task
- Feedback — AI critique
- Review — recall next day
- Reflection — note patterns

Exercise 2 — System Stress Test

Prompt

What could cause this system to fail?

How can I make it more resilient?

Example Output

- Failure: skipping review
- Fix: calendar reminder

Exercise 3 — System Personalization

Prompt

Adjust this system to match my Personal Learning Profile.

Example Output

Shorter sessions, more examples, slower pacing.

Exercise 4 — Automation Prompt

Prompt

Create a reusable starter prompt
I can copy-paste for any new topic.

Example Output

“Using my learning profile, teach me [TOPIC] using short explanations, examples, practice, feedback, and review.”

Exercise 5 — System Reflection

Journal

- Does this feel sustainable?
- What part feels heavy?
- What part feels natural?

11 THINKING CLEARLY & ASSUMPTIONS

Most confusion comes from hidden assumptions

Goal of Issue 11:

Help learners surface and challenge **assumptions** that silently block understanding.

Exercise 1 — Assumption Identification

What the Learner Does

Reveal what they believe to be true *without realizing it.*

Prompt

What assumptions am I making about this topic?

List at least 5 assumptions and explain each.

Example Topic: Learning Python

Example AI Output

- Python requires advanced math
- I must understand everything before writing code
- Errors mean I'm failing
- There is a "right" learning order
- Experts don't struggle

What This Result Means

Your struggle isn't about ability — it's about **unexamined beliefs**.

Why This Improves Learning

Assumptions distort effort. Exposing them restores clarity.

Exercise 2 — Assumption Testing

Prompt

Which of these assumptions are false or partially false?

What evidence contradicts them?

Example Output

Python requires logic more than math; errors are a normal learning signal.

Exercise 3 — Assumption Replacement

Prompt

Rewrite my assumptions into more accurate, helpful beliefs.

Example Output

Errors are feedback, not failure.

Exercise 4 — Reflection

Journal

- Which assumption surprised me most?
- Which one has held me back?

12 LEARNING DEPTH & SCOPE

Knowing how deep to go saves enormous time

Goal of Issue 12:

Teach learners to **calibrate depth** instead of overlearning.

Exercise 1 — Depth Calibration

Prompt

How deep do I need to learn this topic right now
based on my goal and timeframe?

Example Output

Learn core syntax and practical patterns; skip optimization and edge cases.

Exercise 2 — Depth Map

Prompt

Create a depth map:

- Must know now
- Nice to know later
- Ignore for now

Example Output

- Must: variables, loops, functions
- Later: decorators, generators
- Ignore: deep internals

Exercise 3 — Overlearning Detection

Prompt

What do learners usually overlearn too early in this topic?

Example Output

Syntax memorization without application.

Exercise 4 — Reflection

Journal

- What can I stop worrying about?

- What can I confidently delay?

13 TRADEOFFS & PRIORITIZATION

Every learning decision has a cost

Goal of Issue 13:

Teach learners to think in **tradeoffs**, not absolutes.

Exercise 1 — Tradeoff Analysis

Prompt

What are the tradeoffs of learning this now vs later?

Include opportunity cost.

Example Output

Learning now speeds automation but delays other skills.

Exercise 2 — Compare Options

Prompt

Compare these two learning paths.

Which aligns better with my goal and constraints?

Example Output

Path A builds foundations faster with less burnout.

Exercise 3 — Priority Decision

Prompt

Given my constraints, what should I prioritize this month?

Example Output

Focus on core functions and simple scripts.

Exercise 4 — Reflection

Journal

- What am I choosing not to learn right now?
- Does that feel intentional?

14 LEARNING SYSTEMS & WORKFLOWS

Learning works best when it's designed

Goal of Issue 14:

Turn scattered effort into a **coherent system**.

⌚ Exercise 1 — Learning System Mapping

Prompt

Map my learning process into:

intake → practice → feedback → review → reflection

Example Output

- Intake: short explanation
- Practice: small task
- Feedback: AI critique
- Review: recall next day
- Reflection: journal notes

⌚ Exercise 2 — Bottleneck Detection

Prompt

Where does my learning system break down most often?

Example Output

Skipping review causes forgetting.

⌚ Exercise 3 — System Optimization

Prompt

Optimize my system based on my Personal Learning Profile.

Example Output

Shorter intake, more examples, slower pacing.

⌚ Exercise 4 — Automation Prompt

Prompt

Create a reusable prompt that runs this entire system for me.

Example Output

“Teach me [TOPIC] using my profile. Start simple, give practice, critique, then review.”

Exercise 5 — Reflection

Journal

- Does this system feel sustainable?
- What feels heavy?
- What feels natural?

15 BUILDING & TEACHING FOR MASTERY

You don't truly understand until you create

Goal of Issue 15:

Shift learners from consumption to **output**.

Exercise 1 — Builder Mode

Prompt

Help me build something small that applies this concept.

Keep it realistic and simple.

Example Output

Build a script that renames files automatically.

Exercise 2 — Teacher Mode

Prompt

Help me explain what I built to a beginner.

Highlight decisions and tradeoffs.

Example Output

I chose simplicity over optimization to reduce errors.

Exercise 3 — Explanation Critique

Prompt

Critique my explanation for clarity and gaps.

Example Output

Add why you chose this approach.

Exercise 4 — Reflection

Journal

- What did building reveal?
- What was harder than expected?

Exercise 5 — Asset Creation

Prompt

How can I turn this into a reusable learning or portfolio asset?

Example Output

Convert it into a tutorial or checklist.

16 STRATEGIC FORGETTING

Learning less — intentionally — to grow faster

Goal of Issue 16:

Teach learners to decide what NOT to learn, so attention goes where it matters most.

Exercise 1 — What to Ignore Right Now

Prompt

Based on my goal of [GOAL],
what parts of this topic can I safely ignore for now?
Explain why.

Example Output

You can ignore advanced optimizations and rare edge cases until you're building larger projects.

What This Means

Not everything deserves your attention *now*.

Why This Improves Learning

Reduces overload, guilt, and wasted effort.

Exercise 2 — The 80/20 Filter

Prompt

Identify the 20% of this topic that produces 80% of the real-world value.

Example Output

Core syntax, functions, and basic data structures drive most practical use.

Meaning

Focus on leverage, not completeness.

Exercise 3 — Overlearning Trap Detection

Prompt

What do learners commonly overlearn early that rarely matters in practice?

Example Output

Memorizing syntax without applying it.

Exercise 4 — Learn-Later List

Task

Create a written list:

- “Intentionally not learning this quarter”

Example

Advanced decorators, deep internals, performance tuning

Why This Matters

Intentional delay removes anxiety.

Exercise 5 — Weekly Forgetting Review

Journal

- What didn't move me forward this week?
- What should I stop next week?

17 JUDGMENT & DECISION THINKING

Using AI as a thinking partner

Goal of Issue 17:

Improve **decision quality**, not just speed.

Exercise 1 — Goal Clarification

Prompt

Help me clearly define the goal of this decision.

What does success look like in 3, 6, and 12 months?

Example Output

Success means automating tasks, not mastering theory.

Exercise 2 — Assumption Audit

Prompt

What assumptions am I making in this decision?

Which are risky?

Exercise 3 — Tradeoff Mapping

Prompt

Map the tradeoffs of each option.

What do I gain and lose?

Exercise 4 — Scenario Simulation

Prompt

Simulate best-case, worst-case, and most likely outcomes.

Exercise 5 — Reflection

Journal

- What assumption mattered most?
- Would I decide differently next time?

18 ADVANCED PROJECT DESIGN

Turning learning into proof

Goal of Issue 18:

Design projects that **signal judgment**, not just skill.

Exercise 1 — Project Goal & Signal

Prompt

What should this project prove about how I think?

Exercise 2 — Constraint Design

Prompt

What constraints should I impose to keep this project focused and realistic?

Exercise 3 — Tradeoff Documentation

Prompt

What tradeoffs will I intentionally accept in this project?

Exercise 4 — Explanation Layer

Prompt

Help me explain the decisions and tradeoffs behind this project.

Exercise 5 — Portfolio Placement

Prompt

How does this project fit into my larger learning or career narrative?

19 CAREER LEVERAGE & COMPOUNDING SKILLS

Learning that pays off long-term

Goal of Issue 19:

Choose skills that grow in value over time.

Exercise 1 — Skill Inventory

Task

List current skills (technical, thinking, communication).

Exercise 2 — Leverage Filter

Prompt

Which of my skills amplify other skills?

Which don't?

Exercise 3 — Future-Proofing

Prompt

Which skills are likely to remain valuable despite AI advances?

Exercise 4 — Skill Stack Design

Prompt

Design a skill stack that compounds over time for my goals.

Exercise 5 — Intentional Exclusion

Journal

- What skill will I not pursue right now?
- Why is that a good decision?

20 — META-LEARNING

Learning how you learn best

Goal of Issue 20:

Turn learning into a **self-improving system**.

Exercise 1 — Look Back (Learning Evidence)

Prompt

Analyze my last 3 learning attempts.

What worked, what didn't, and why?

Exercise 2 — Pattern Detection

Prompt

Identify patterns in how I learn best and where I struggle.

Exercise 3 — One-Variable Experiment

Prompt

Design a 7-day learning experiment where I change ONE variable.

Exercise 4 — Learning Signals Dashboard

Prompt

Help me define my confusion, overload, flow, and false-progress signals.

Summarize as a checklist.

Exercise 5 — Meta-Learner Statement

Prompt

Help me write my Meta-Learner Statement:

- I learn best when...
- I struggle when...
- My ideal learning structure is...
- When I get stuck, I should...
- My next upgrade is...

Example Output

I learn best with short explanations, examples, and immediate practice.

I struggle with abstract theory and overload.

My ideal structure is 20-minute sessions with feedback.

When stuck, simplify and practice once.

My next upgrade is weekly reflection.